An integrated gasification combined cycle (IGCC) is a technology using a high pressure gasifier to turn
coal
Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other Chemical element, elements, chiefly hydrogen, sulfur, oxygen, and nitrogen.
Coal i ...
and other carbon based fuels into pressurized
synthesis gas
Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as ...
. This enables removal of impurities from the fuel prior to
generating electricity, reducing emissions of
sulfur dioxide
Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a colorless gas with a pungent smell that is responsible for the odor of burnt matches. It is r ...
, particulates,
mercury, and in some cases
carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
. Some of these impurities, such as sulfur, can be turned into re-usable byproducts through the
Claus process. With additional process equipment,
carbon monoxide
Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
can be converted to carbon dioxide via
water-gas shift reaction, enabling it to be
sequestered and increasing gasification efficiency. Excess heat from the primary combustion and syngas fired generation is then passed to a
steam cycle, producing additional electricity. This process results in improved thermodynamic efficiency, compared to conventional
pulverized coal combustion.
Significance
Coal can be found in abundance in the USA and many other countries and its price has remained relatively constant in recent years. Of the traditional hydrocarbon fuels -
oil,
coal
Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other Chemical element, elements, chiefly hydrogen, sulfur, oxygen, and nitrogen.
Coal i ...
, and
natural gas
Natural gas (also fossil gas, methane gas, and gas) is a naturally occurring compound of gaseous hydrocarbons, primarily methane (95%), small amounts of higher alkanes, and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium ...
- coal is used as a feedstock for 40% of global electricity generation. Fossil fuel consumption and its contribution to large-scale emissions is becoming a pressing issue because of the adverse
effects of climate change
Effects of climate change are well documented and growing for Earth's natural environment and human societies. Changes to the climate system include an Instrumental temperature record, overall warming trend, Effects of climate change on the ...
. In particular, coal contains more CO
2 per BTU than oil or natural gas and is responsible for 43% of CO
2 emissions from fuel combustion. Thus, the lower emissions that IGCC technology allows through gasification and
pre-combustion carbon capture is discussed as a way to addressing aforementioned concerns.
Operations
Below is a schematic flow diagram of an IGCC plant:
The gasification process can produce
syngas
Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as ...
from a wide variety of carbon-containing feedstocks, such as high-sulfur coal, heavy petroleum residues, and
biomass
Biomass is a term used in several contexts: in the context of ecology it means living organisms, and in the context of bioenergy it means matter from recently living (but now dead) organisms. In the latter context, there are variations in how ...
.
The plant is called ''integrated'' because (1) the syngas produced in the gasification section is used as fuel for the gas turbine in the
combined cycle and (2) the steam produced by the syngas coolers in the gasification section is used by the steam turbine in the combined cycle.
In this example the syngas produced is used as fuel in a gas turbine which produces electrical power. In a normal combined cycle, so-called "waste heat" from the gas turbine exhaust is used in a
Heat Recovery Steam Generator (HRSG) to make steam for the steam turbine cycle. An IGCC plant improves the overall process efficiency by adding the higher-temperature steam produced by the gasification process to the steam turbine cycle. This steam is then used in steam turbines to produce additional electrical power.
IGCC plants are advantageous in comparison to conventional coal power plants due to their high
thermal efficiency
In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
For ...
, low non-carbon greenhouse gas emissions, and capability to process low grade coal. The disadvantages include higher capital and maintenance costs, and the amount of released without pre-combustion capture.
Process overview
* The solid coal is gasified to produce syngas, or synthetic gas. Syngas is synthesized by gasifying coal in a closed pressurized reactor with a shortage of oxygen. The shortage of oxygen ensures that coal is broken down by the heat and pressure as opposed to burning completely. The chemical reaction between coal and oxygen produces a product that is a mixture of carbon and hydrogen, or syngas. C
xH
y + (x/2)O
2 → (x)CO + (y/2)H
2
* The heat from the production of syngas is used to produce steam from cooling water which is then used for
steam turbine
A steam turbine or steam turbine engine is a machine or heat engine that extracts thermal energy from pressurized steam and uses it to do mechanical work utilising a rotating output shaft. Its modern manifestation was invented by Sir Charles Par ...
electricity production.
* The syngas must go through a pre-combustion separation process to remove CO
2 and other impurities to produce a more purified fuel. Three steps are necessary for the separation of impurities:
#
Water-gas-shift reaction. The reaction that occurs in a water-gas-shift reactor is CO + H
2O
CO
2 + H
2. This produces a syngas with a higher composition of hydrogen fuel which is more efficient for burning later in combustion.
# Physical separation process. This can be done through various mechanisms such as absorption, adsorption or membrane separation.
# Drying, compression and storage/shipping.
* The resulting syngas fuels a
combustion turbine that produces electricity. At this stage the syngas is fairly pure H
2.
Benefits and drawbacks
A major drawback of using coal as a fuel source is the emission of carbon dioxide and pollutants, including sulfur dioxide, nitrogen oxide, mercury, and particulates. Almost all coal-fired power plants use pulverized coal combustion, which grinds the coal to increase the surface area, burns it to make steam, and runs the steam through a turbine to generate electricity. Pulverized coal plants can only capture carbon dioxide after combustion when it is diluted and harder to separate. In comparison, gasification in IGCC allows for separation and capture of the concentrated and pressurized carbon dioxide before combustion. Syngas cleanup includes filters to remove bulk particulates, scrubbing to remove fine particulates, and solid adsorbents for mercury removal. Additionally, hydrogen gas is used as fuel, which produces no pollutants under combustion.
IGCC also consumes less water than traditional pulverized coal plants. In a pulverized coal plant, coal is burned to produce steam, which is then used to create electricity using a steam turbine. Then steam exhaust must then be condensed with cooling water, and water is lost by evaporation. In IGCC, water consumption is reduced by combustion in a gas turbine, which uses the generated heat to expand air and drive the turbine. Steam is only used to capture the heat from the combustion turbine exhaust for use in a secondary steam turbine. Currently, the major drawback is the high capital cost compared to other forms of power production.
Installations
The DOE Clean Coal Demonstration Project helped construct 3 IGCC plants: Edwarsport Power Station in
Edwardsport, Indiana, Polk Power Station in
Tampa, Florida
Tampa ( ) is a city on the Gulf Coast of the United States, Gulf Coast of the U.S. state of Florida. Tampa's borders include the north shore of Tampa Bay and the east shore of Old Tampa Bay. Tampa is the largest city in the Tampa Bay area and t ...
(online 1996), and Pinon Pine in
Reno, Nevada
Reno ( ) is a city in the northwest section of the U.S. state of Nevada, along the Nevada–California border. It is the county seat and most populous city of Washoe County, Nevada, Washoe County. Sitting in the High Eastern Sierra foothills, ...
. In the Reno demonstration project, researchers found that then-current IGCC technology would not work more than 300 feet (100m) above sea level. The DOE report in reference 3 however makes no mention of any altitude effect, and most of the problems were associated with the solid waste extraction system. The Polk Power station is currently operating, following resolution of demonstration start-up problems, but the Piñon Pine project encountered significant problems and was abandoned.
The US DOE's Clean Coal Power Initiative (CCPI Phase 2) selected the
Kemper Project as one of two projects to demonstrate the feasibility of low emission coal-fired power plants.
Mississippi Power began construction on the
Kemper Project in Kemper County, Mississippi, in 2010 and is poised to begin operation in 2016, though there have been many delays. In March, the projected date was further pushed back from early 2016 to August 31, 2016, adding $110 million to the total and putting the project 3 years behind schedule. The electrical plant is a flagship
Carbon Capture and Storage
Carbon capture and storage (CCS) is a process by which carbon dioxide (CO2) from industrial installations is separated before it is released into the atmosphere, then transported to a long-term storage location.IPCC, 2021Annex VII: Glossary at ...
(CCS) project that burns
lignite
Lignite (derived from Latin ''lignum'' meaning 'wood'), often referred to as brown coal, is a soft, brown, combustible sedimentary rock formed from naturally compressed peat. It has a carbon content around 25–35% and is considered the lowest ...
coal and utilizes pre-combustion IGCC technology with a projected 65% emission capture rate.
The first generation of IGCC plants polluted less than contemporary coal-based technology, but also polluted water; for example, the Wabash Gasification Facility, located in Vigo County, Indiana, was out of compliance with its water permit during 1998–2001
because it emitted arsenic, selenium and cyanide. Wabash operated commercially until 2016, and was being converted to a low carbon hydrogen and ammonia facility as of 2025.
IGCC is now touted as ''capture ready'' and could potentially be used to capture and store carbon dioxide. (See
FutureGen
FutureGen was a project to demonstrate carbon capture and storage, capture and sequestration of waste carbon dioxide from a coal-fired electrical generating station. The project (renamed FutureGen 2.0) was retrofitting a shuttered coal-fired powe ...
)Poland's Kędzierzyn will soon host a
Zero-Emission Power & Chemical Plant that combines coal gasification technology with
Carbon Capture & Storage (CCS). This installation had been planned, but there has been no information about it since 2009. Other operating IGCC plants in existence around the world are the Alexander (formerly Buggenum) in the Netherlands, Puertollano in Spain, and JGC in Japan.
The
Texas Clean Energy project planned to build a 400 MW IGCC facility that would incorporate carbon capture, utilization and storage (CCUS) technology. The project would have been the first coal power plant in the United States to combine IGCC and 90% carbon capture and storage. The sponsor Summit Power filed for bankruptcy in 2017.
There are several advantages and disadvantages when compared to conventional post combustion carbon capture and various variations
Cost and reliability
A key issue in implementing IGCC is its high capital cost, which prevents it from competing with other power plant technologies. Currently, ordinary pulverized coal plants are the lowest cost power plant option. The advantage of IGCC comes from the ease of retrofitting existing power plants that could offset the high
capital cost {{no footnotes, date=December 2016
Capital costs are fixed, one-time expenses incurred on the purchase of land, buildings, construction, and equipment used in the production of goods or in the rendering of services. In other words, it is the total ...
. In a 2007 model, IGCC with CCS is the lowest-cost system in all cases. This model compared estimations of
levelized cost of electricity, showing IGCC with CCS to cost 71.9 $US2005/MWh, pulverized coal with CCS to cost 88 $US2005/MWh, and natural gas combined cycle with CCS to cost 80.6 $US2005/MWh. The levelized cost of electricity was noticeably sensitive to the price of natural gas and the inclusion of carbon storage and transport costs.
The potential benefit of retrofitting has so far, not offset the cost of IGCC with carbon capture technology. A 2013 report by the U.S. Energy Information Administration demonstrates that the overnight cost of IGCC with CCS has increased 19% since 2010. Amongst the three power plant types, pulverized coal with CCS has an overnight capital cost of $5,227 (2012 dollars)/kW, IGCC with CCS has an overnight capital cost of $6,599 (2012 dollars)/kW, and natural gas combined cycle with CCS has an overnight capital cost of $2,095 (2012 dollars)/kW. Pulverized coal and
NGCC costs did not change significantly since 2010. The report further relates that the 19% increase in IGCC cost is due to recent information from IGCC projects that have gone over budget and cost more than expected.
Recent testimony in regulatory proceedings show the cost of IGCC to be twice that predicted by Goddell, from $96 to 104/MWh. That's before addition of carbon capture and sequestration (sequestration has been a
mature technology at both Weyburn in Canada (for
enhanced oil recovery
Enhanced oil recovery (abbreviated EOR), also called tertiary recovery, is the extraction of crude oil from an oil field that cannot be extracted after primary and secondary recovery methods have been completely exhausted. Whereas primary and se ...
) and Sleipner in the North Sea at a commercial scale for the past ten years)—capture at a 90% rate is expected to have a $30/MWh additional cost.
Wabash was down repeatedly for long stretches due to gasifier problems. Subsequent projects, such as Excelsior's Mesaba Project, have a third gasifier and train built in.
The Polk County IGCC has design problems. First, the project was initially shut down because of corrosion in the slurry pipeline that fed slurried coal from the rail cars into the gasifier. A new coating for the pipe was developed. Second, the thermocoupler was replaced in less than two years; an indication that the gasifier had problems with a variety of feedstocks; from bituminous to sub-bituminous coal. The gasifier was designed to also handle lower rank lignites. Third, unplanned down time on the gasifier because of refractory liner problems, and those problems were expensive to repair. The gasifier was originally designed in Italy to be half the size of what was built at Polk. Newer ceramic materials may assist in improving gasifier performance and longevity. Understanding the operating problems of the current IGCC plant is necessary to improve the design for the IGCC plant of the future. (Polk IGCC Power Plant, https://web.archive.org/web/20151228085513/http://www.clean-energy.us/projects/polk_florida.html.) Keim, K., 2009, IGCC A Project on Sustainability Management Systems for Plant Re-Design and Re-Image. This is an unpublished paper from Harvard University)
General Electric is currently designing an IGCC model plant that should introduce greater reliability. GE's model features advanced turbines optimized for the coal syngas. Eastman's industrial gasification plant in Kingsport, TN uses a GE Energy solid-fed gasifier. Eastman, a fortune 500 company, built the facility in 1983 without any state or federal subsidies and turns a profit.
There are several refinery-based IGCC plants in Europe that have demonstrated good availability (90-95%) after initial shakedown periods. Several factors help this performance:
# None of these facilities use advanced technology (''F'' type) gas turbines.
# All refinery-based plants use refinery residues, rather than coal, as the feedstock. This eliminates coal handling and coal preparation equipment and its problems. Also, there is a much lower level of ash produced in the gasifier, which reduces cleanup and downtime in its gas cooling and cleaning stages.
# These non-utility plants have recognized the need to treat the gasification system as an up-front chemical processing plant, and have reorganized their operating staff accordingly.
Another IGCC success story has been the 250 MW Buggenum plant in The Netherlands, which was commissioned in 1994 and closed in 2013, had good availability. This coal-based IGCC plant was originally designed to use up to 30% biomass as a supplemental feedstock. The owner, NUON, was paid an incentive fee by the government to use the biomass. NUON has constructed a 1,311 MW IGCC plant in the Netherlands, comprising three 437 MW CCGT units. The Nuon Magnum IGCC power plant was commissioned in 2011, and was officially opened in June 2013. Mitsubishi Heavy Industries has been awarded to construct the power plant. Following a deal with environmental organizations, NUON has been prohibited from using the Magnum plant to burn coal and biomass, until 2020. Because of high gas prices in the Netherlands, two of the three units are currently offline, whilst the third unit sees only low usage levels. The relatively low 59% efficiency of the Magnum plant means that more efficient CCGT plants (such as the Hemweg 9 plant) are preferred to provide (backup) power.
A new generation of IGCC-based coal-fired power plants has been proposed, although none is yet under construction. Projects are being developed by
AEP,
Duke Energy, and
Southern Company in the US, and in Europe by
ZAK/PKE,
Centrica (UK),
E.ON and RWE (both Germany) and NUON (Netherlands). In Minnesota, the state's Dept. of Commerce analysis found IGCC to have the highest cost, with an emissions profile not significantly better than pulverized coal. In Delaware, the Delmarva and state consultant analysis had essentially the same results.
The high cost of IGCC is the biggest obstacle to its integration in the power market; however, most energy executives recognize that carbon regulation is coming soon. Bills requiring carbon reduction are being proposed again both the House and the Senate, and with the Democratic majority it seems likely that with the next President there will be a greater push for carbon regulation. The Supreme Court decision requiring the EPA to regulate carbon (Commonwealth of Massachusetts et al. v. Environmental Protection Agency et al.)
0also speaks to the likelihood of future carbon regulations coming sooner, rather than later. With carbon capture, the cost of electricity from an IGCC plant would increase approximately 33%. For a natural gas CC, the increase is approximately 46%. For a pulverized coal plant, the increase is approximately 57%. This potential for less expensive carbon capture makes IGCC an attractive choice for keeping low cost coal an available fuel source in a carbon constrained world. However, the industry needs a lot more experience to reduce the risk premium. IGCC with CCS requires some sort of mandate, higher carbon market price, or regulatory framework to properly incentivize the industry.
In Japan, electric power companies, in conjunction with
Mitsubishi Heavy Industries
is a Japanese Multinational corporation, multinational engineering, electrical equipment and electronics corporation headquartered in Tokyo, Japan. MHI is one of the core companies of the Mitsubishi Group and its automobile division is the prede ...
has been operating a 200 t/d IGCC pilot plant since the early '90s. In September 2007, they started up a 250 MW demo plant in Nakoso. It runs on air-blown (not oxygen) dry feed coal only. It burns PRB coal with an unburned carbon content ratio of <0.1% and no detected leaching of trace elements. It employs not only ''F'' type turbines but ''G'' type as well. (see gasification.org link below)
Next generation IGCC plants with CO
2 capture technology will be expected to have higher thermal efficiency and to hold the cost down because of simplified systems compared to conventional IGCC. The main feature is that instead of using oxygen and nitrogen to gasify coal, they use oxygen and CO
2. The main advantage is that it is possible to improve the performance of cold gas efficiency and to reduce the unburned carbon (char).
As a reference for powerplant efficiency:
* With Frame E gas turbine, 30bar quench gas cooling, Cold Temperature Gas Cleaning and 2 level HRSC it is possible to achieve around 38%
energy efficiency.
* With Frame F gas turbine, 60 bar quench gasifier, Cold Temperature Gas Cleaning and 3 level+RH HRSC it is possible to achieve around 45% energy efficiency.
* Latest development of Frame G gas turbines, ASU air integration, High temperature desulfurization may shift up performance even further.
The CO
2 extracted from gas turbine exhaust gas is utilized in this system. Using a closed gas turbine system capable of capturing the CO
2 by direct compression and liquefication obviates the need for a separation and capture system.
CO2 capture in IGCC
Pre-combustion CO
2 removal is much easier than CO
2 removal from flue gas in post-combustion capture due to the high concentration of CO
2 after the water-gas-shift reaction and the high pressure of the syngas. During pre-combustion in IGCC, the partial pressure of CO
2 is nearly 1000 times higher than in post-combustion flue gas.
Due to the high concentration of CO
2 pre-combustion, physical solvents, such as
Selexol and
Rectisol, are preferred for the removal of CO
2 vs that of chemical solvents. Physical solvents work by absorbing the acid gases without the need of a chemical reaction as in traditional amine based solvents. The solvent can then be regenerated, and the CO
2 desorbed, by reducing the pressure. The biggest obstacle with physical solvents is the need to cool the syngas before separation, then reheat it afterwards for combustion, consuming energy and decreasing overall plant efficiency.
Testing
National and international test codes are used to standardize the procedures and definitions used to test IGCC Power Plants. Selection of the test code to be used is an agreement between the purchaser and the manufacturer, and has some significance to the design of the plant and associated systems. In the United States,
The American Society of Mechanical Engineers published the Performance Test Code for IGCC Power Generation Plants (PTC 47) in 2006 which provides procedures for the determination of quantity and quality of fuel gas by its flow rate, temperature, pressure, composition, heating value, and its content of contaminants.
IGCC emission controversy
In 2007, the New York State Attorney General's office demanded full disclosure of "financial risks from greenhouse gases" to the shareholders of electric power companies proposing the development of IGCC coal-fired power plants. "Any one of the several new or likely regulatory initiatives for CO
2 emissions from power plants - including state carbon controls, EPA's regulations under the Clean Air Act, or the enactment of federal global warming legislation - would add a significant cost to
carbon-intensive coal generation"; U.S. Senator
Hillary Clinton
Hillary Diane Rodham Clinton ( Rodham; born October 26, 1947) is an American politician, lawyer and diplomat. She was the 67th United States secretary of state in the administration of Barack Obama from 2009 to 2013, a U.S. senator represent ...
from New York has proposed that this full risk disclosure be required of all publicly traded power companies nationwide. This honest disclosure has begun to reduce investor interest in all types of existing-technology coal-fired power plant development, including IGCC.
Senator
Harry Reid
Harry Mason Reid Jr. (; December 2, 1939 – December 28, 2021) was an American lawyer and politician who served as a United States Senate, United States senator from Nevada from 1987 to 2017. He led the Senate Democratic Caucus from 2005 to 2 ...
(Majority Leader of the 2007/2008 U.S. Senate) told the 2007 Clean Energy Summit that he will do everything he can to stop construction of proposed new IGCC coal-fired electric power plants in Nevada. Reid wants Nevada utility companies to invest in
solar energy
Solar energy is the radiant energy from the Sun's sunlight, light and heat, which can be harnessed using a range of technologies such as solar electricity, solar thermal energy (including solar water heating) and solar architecture. It is a ...
,
wind energy
Wind power is the use of wind energy to generate useful work. Historically, wind power was used by sails, windmills and windpumps, but today it is mostly used to generate electricity. This article deals only with wind power for electricity ...
and
geothermal energy
Geothermal energy is thermal energy extracted from the crust (geology), crust. It combines energy from the formation of the planet and from radioactive decay. Geothermal energy has been exploited as a source of heat and/or electric power for m ...
instead of coal technologies. Reid stated that
global warming
Present-day climate change includes both global warming—the ongoing increase in global average temperature—and its wider effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes ...
is a reality, and just one proposed coal-fired plant would contribute to it by burning seven million tons of coal a year. The long-term
healthcare
Health care, or healthcare, is the improvement or maintenance of health via the preventive healthcare, prevention, diagnosis, therapy, treatment, wikt:amelioration, amelioration or cure of disease, illness, injury, and other disability, physic ...
costs would be far too high, he claimed (no source attributed). "I'm going to do everything I can to stop these plants.", he said. "There is no
clean coal technology. There is cleaner coal technology, but there is no clean coal technology."
One of the most efficient ways to treat the H2S gas from an IGCC plant is by converting it into sulphuric acid in a wet gas sulphuric acid process Wet sulfuric acid process, WSA process. However, the majority of the H2S treating plants utilize the modified Claus process, as the sulphur market infrastructure and the transportation costs of sulphuric acid versus sulphur are in favour of sulphur production.
See also
* Relative cost of electricity generated by different sources
*Environmental impact of the coal industry
The health and environmental impact of the coal industry includes issues such as land use, waste management, Water pollution, water and air pollution, caused by the coal mining, processing and the use of its products. In addition to atmospher ...
* Integrated Gasification Fuel Cell Cycle
References
External links
Huntstown: Ireland's most efficient power plant
@ Siemens
Siemens AG ( ) is a German multinational technology conglomerate. It is focused on industrial automation, building automation, rail transport and health technology. Siemens is the largest engineering company in Europe, and holds the positi ...
Power Generation website
Natural Gas Combined-cycle Gas Turbine Power Plants
Northwest Power Planning Council, New Resource Characterization for the Fifth Power Plan, August 2002
Combined cycle solar power
{{DEFAULTSORT:Integrated Gasification Combined Cycle
Thermodynamic cycles
Chemical processes
Power station technology
Energy conversion