HOME

TheInfoList



OR:

Indirect injection in an
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
is
fuel injection Fuel injection is the introduction of fuel in an internal combustion engine, most commonly automotive engines, by the means of a fuel injector. This article focuses on fuel injection in reciprocating piston and Wankel rotary engines. All c ...
where fuel is not directly injected into the
combustion chamber A combustion chamber is part of an internal combustion engine in which the air–fuel ratio, fuel/air mix is burned. For steam engines, the term has also been used for an extension of the Firebox (steam engine), firebox which is used to allow a mo ...
.
Gasoline engine A petrol engine (gasoline engine in American and Canadian English) is an internal combustion engine designed to run on petrol (gasoline). Petrol engines can often be adapted to also run on fuels such as Autogas, liquefied petroleum gas and Common ...
s equipped with indirect injection systems, wherein a fuel injector delivers the fuel at some point before the intake valve, have mostly fallen out of favor to direct injection. However, certain manufacturers such as Volkswagen, Toyota and Ford have developed a 'dual injection' system, combining direct injectors with port (indirect) injectors, combining the benefits of both types of fuel injection. Direct injection allows the fuel to be precisely metered into the combustion chamber under high pressure which can lead to greater power and fuel efficiency. The issue with direct injection is that it typically leads to greater amounts of
particulate matter Particulate matter (PM) or particulates are microscopic particles of solid or liquid matter suspended in the air. An ''aerosol'' is a mixture of particulates and air, as opposed to the particulate matter alone, though it is sometimes defin ...
and with the fuel no longer contacting the intake valves, carbon can accumulate on the intake valves over time. Adding indirect injection keeps fuel spraying on the intake valves, reducing or eliminating the carbon accumulation on intake valves and in low load conditions, indirect injection allows for better fuel-air mixing. This system is mainly used in higher cost models due to the added expense and complexity. Port injection refers to the spraying of the fuel onto the back of the intake valve, which speeds its evaporation. An indirect injection
diesel engine The diesel engine, named after the German engineer Rudolf Diesel, is an internal combustion engine in which Combustion, ignition of diesel fuel is caused by the elevated temperature of the air in the cylinder due to Mechanics, mechanical Compr ...
delivers fuel into a chamber off the combustion chamber, either a prechamber or swirl chamber, where combustion begins and then spreads into the main combustion chamber. The prechamber is carefully designed to ensure adequate mixing of the atomized fuel with the compression-heated air.


Gasoline engines

An advantage of indirect injection gasoline engines versus direct injection gasoline engines is that deposits on intake valves from the
crankcase ventilation system A crankcase ventilation system (CVS) removes unwanted gases from the crankcase of an internal combustion engine. The system usually consists of a tube, a one-way valve and a vacuum source (such as the inlet manifold). The unwanted gases, called ...
are washed by the fuel. Indirect injection engines also tend to produce lower amounts of
particulate matter Particulate matter (PM) or particulates are microscopic particles of solid or liquid matter suspended in the air. An ''aerosol'' is a mixture of particulates and air, as opposed to the particulate matter alone, though it is sometimes defin ...
compared to direct injection engines as the fuel and air are more uniformly mixed.


Diesel engines


Overview

The purpose of the divided combustion chamber is to speed the combustion process, and to increase power output by increasing engine speed. The addition of a prechamber increases heat loss to the cooling system and thereby lowers engine efficiency. The engine requires glow plugs for starting. In an indirect injection system the air moves fast, mixing the fuel and air. This simplifies engine (piston crown, head, valves, injector, prechamber, etc.) design and allows the use of less tightly toleranced designs which are simpler to manufacture and more reliable. Direct injection, by contrast, uses slow-moving air and fast-moving fuel; both the design and manufacture of the injectors is more difficult. The optimisation of the in-cylinder air flow is much more difficult than designing a prechamber. There is much more integration between the design of the injector and the engine. It is for this reason that car diesel engines were almost all indirect injection until the ready availability of powerful CFD simulation systems made the adoption of direct injection practical.


Classification of indirect combustion chambers


Swirl chamber

Swirl chambers are spherical cavities located in the cylinder head and separated from the engine cylinder by a tangential throat. About 50% of the air enters the swirl chamber during the compression stroke of the engine, producing a swirl. After combustion, the products return through the same throat to the main cylinder at much higher velocity, so more heat is lost to the walls of the passage. This type of chamber finds application in engines in which fuel control and engine stability are more important than fuel economy. These are also called Ricardo chambers, named after the inventor, Sir Harry Ricardo.


Precombustion chamber

This chamber is located at the cylinder head and is connected to the engine cylinder by small holes. It occupies 40% of the total cylinder volume. During the compression stroke, air from the main cylinder enters the precombustion chamber. At this moment, fuel is injected into the precombustion chamber and combustion begins. Pressure increases and the fuel droplets are forced through the small holes into the main cylinder, resulting in a very good mix of the fuel and air. The bulk of the combustion actually takes place in the main cylinder. This type of combustion chamber has multi-fuel capability because the temperature of the prechamber vaporizes the fuel before the main combustion event occurs.


Air cell chamber

The air cell is a small cylindrical chamber with a hole in one end. It is mounted more or less coaxially with the injector, said axis being parallel to the piston crown, with the injector firing across a small cavity which is open to the cylinder into the hole in the end of the air cell. The air cell is mounted so as to minimise thermal contact with the mass of the head. A pintle injector with a narrow spray pattern is used. At its top dead centre (TDC) the majority of the charge mass is contained in the cavity and air cell. When the injector fires, the jet of fuel enters the air cell and ignites. This results in a jet of flame shooting back out of the air cell directly into the jet of fuel still issuing from the injector. The heat and turbulence give excellent fuel vaporisation and mixing properties. Also, since the majority of the combustion takes place outside the air cell in the cavity, which communicates directly with the cylinder, there is less heat loss involved in transferring the burning charge into the cylinder. Air cell injection can be considered as a compromise between indirect and direct injection, gaining some of the efficiency advantages of direct injection while retaining the simplicity and ease of development of indirect injection. Air cell chambers are commonly named Lanova air chambers. The Lanova combustion system was developed by the Lanova company, which was founded in 1929 by Franz Lang, Gotthard Wielich and Albert Wielich. In the US, the Lanova system was used by
Mack Trucks Mack Trucks, Inc. is an American truck manufacturing company (law), company and a former manufacturer of buses and Trolleybus, trolley buses. Founded in 1900 as the Mack Brothers Company, it manufactured its first truck in 1905 and adopted its pr ...
. An example is the Mack-Lanova ED diesel engine fitted to the Mack NR truck.


Advantages of indirect injection combustion chambers

* Smaller diesels can be produced. * The injection pressure required is low, so the injector is cheaper to produce. * The injection direction is of less importance. * Indirect injection is much simpler to design and manufacture, especially for gasoline engines. Less injector development is required and the injection pressures are low (1500 psi/100 bar versus 5000 psi/345 bar and higher for direct injection) * The lower stresses that indirect injection imposes on internal components mean that it is possible to produce
petrol Gasoline (North American English) or petrol ( Commonwealth English) is a petrochemical product characterized as a transparent, yellowish, and flammable liquid normally used as a fuel for spark-ignited internal combustion engines. When formul ...
and indirect injection diesel versions of the same basic engine. At best such types differed only in the cylinder head and the need to fit a
distributor A distributor is an electric and mechanical device used in the ignition system of older spark-ignition engines. The distributor's main function is to route electricity from the ignition coil to each spark plug at the correct time. Design ...
and
spark plug A spark plug (sometimes, in British English, a sparking plug, and, colloquially, a plug) is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/air ...
s in the petrol version whilst fitting an injection pump and injectors to the diesel. Examples include the BMC A-Series and B-Series engines and the
Land Rover Land Rover is a brand of predominantly four-wheel drive, off-road capable vehicles, owned by British multinational car manufacturer Jaguar Land Rover (JLR), since 2008 a subsidiary of India's Tata Motors. JLR builds Land Rovers in Brazil ...
2.25/2.5-
litre The litre ( Commonwealth spelling) or liter ( American spelling) (SI symbols L and l, other symbol used: ℓ) is a metric unit of volume. It is equal to 1 cubic decimetre (dm3), 1000 cubic centimetres (cm3) or 0.001 cubic metres (m3). A ...
4-cylinder types. Such designs allow petrol and diesel versions of the same vehicle to be built with minimal design changes between them. * Higher engine speeds can be reached, since burning continues in the prechamber. * Alternative fuels like
bio-diesel Biodiesel is a renewable biofuel, a form of diesel fuel, derived from biological sources like vegetable oils, animal fats, or recycled greases, and consisting of long-chain fatty acid esters. It is typically made from fats. The roots of ...
and waste vegetable oil are less likely to damage the fuel system in an indirect-injection diesel engine, as high injection pressures are not needed. In direct-injection engines (especially modern engines using high-pressure common rail fuel systems), keeping fuel filters in good condition is more critical as debris can damage the pumps and injectors when waste vegetable oil or waste engine oil are used.


Disadvantages

*
Fuel efficiency Fuel efficiency (or fuel economy) is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical energy, chemical potential energy contained in a carrier (fuel) into kinetic energy or Mechanical work, w ...
with diesel engines is lower than with direct injection as the larger exposed areas tend to dissipate more heat and the air moving through the ports tending to increase pressure drops. However, using higher compression ratios will somewhat negate this inefficiency. * Glow plugs are needed for a cold engine start on diesel engines; many indirect injection diesel engines cannot start at all in cold weather without glow plugs. * Because the heat and pressure of combustion is applied to a very small area on the
piston A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder (engine), cylinder a ...
as it exits the precombustion chamber or swirl chamber, such engines are less suited to high
specific power Power-to-weight ratio (PWR, also called specific power, or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement ...
outputs (such as
turbocharging In an internal combustion engine, a turbocharger (also known as a turbo or a turbosupercharger) is a forced induction device that is powered by the flow of exhaust gases. It uses this energy to compress the intake air, forcing more air into the ...
, supercharging, or tuning) than direct injection diesels. The increased temperature and pressure on one part of the
piston A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder (engine), cylinder a ...
crown causes uneven expansion which can lead to cracking, distortion, or other damage, although advancements in manufacturing techniques have allowed manufacturers to largely mitigate the effects of uneven expansion, allowing for indirect injection diesels to use turbocharging. * Indirect engines are often much noisier than direct injection common-rail engines. * Starting fluid ("ether") often cannot be used in an indirect injection diesel engine as the glow plugs greatly increase the risk of preignition compared to direct injection diesels.


See also

* Harry Ricardo * Prosper L'Orange *
Premixed flame A premixed flame is a flame formed under certain conditions during the combustion of a premixed charge (also called pre-mixture) of fuel and oxidiser. Since the fuel and oxidiser—the key chemical reactants of combustion—are available througho ...


References

{{DEFAULTSORT:Indirect Injection Fuel injection systems