Ideal Triangle
   HOME

TheInfoList



OR:

In
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
an ideal triangle is a
hyperbolic triangle In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called ''sides'' or ''edges'' and three point (geometry), points called ''angles'' or ''vertices''. Just as in the Euclidea ...
whose three vertices all are ideal points. Ideal triangles are also sometimes called ''triply asymptotic triangles'' or ''trebly asymptotic triangles''. The vertices are sometimes called ideal vertices. All ideal triangles are congruent.


Properties

Ideal triangles have the following properties: * All ideal triangles are congruent to each other. * The interior angles of an ideal triangle are all zero. * An ideal triangle has infinite perimeter. * An ideal triangle is the largest possible triangle in hyperbolic geometry. In the standard hyperbolic plane (a surface where the constant
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For ...
is −1) we also have the following properties: * Any ideal triangle has area π.


Distances in an ideal triangle

* The
inscribed circle In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incente ...
to an ideal triangle has radius r=\ln\sqrt = \frac \ln 3 = \operatorname\frac = 2 \operatorname(2- \sqrt) = = \operatorname\frac\sqrt = \operatorname\frac\sqrt \approx 0.549 . : The distance from any point in the triangle to the closest side of the triangle is less than or equal to the radius ''r'' above, with equality only for the center of the inscribed circle. * The inscribed circle meets the triangle in three points of tangency, forming an equilateral contact triangle with side length d = \ln\left(\frac\right)= 2\ln\varphi\approx 0.962 where \varphi=\frac is the
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \fr ...
. : A circle with radius ''d'' around a point inside the triangle will meet or intersect at least two sides of the triangle. * The distance from any point on a side of the triangle to another side of the triangle is equal or less than a = \ln\left(1+ \sqrt 2\right) \approx 0.881, with equality only for the points of tangency described above. :''a'' is also the
altitude Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum (geodesy), datum and a point or object. The exact definition and reference datum varies according to the context (e.g., aviation, geometr ...
of the Schweikart triangle.


Thin triangle condition

Because the ideal triangle is the largest possible triangle in hyperbolic geometry, the measures above are maxima possible for any
hyperbolic triangle In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called ''sides'' or ''edges'' and three point (geometry), points called ''angles'' or ''vertices''. Just as in the Euclidea ...
. This fact is important in the study of δ-hyperbolic space.


Models

In the
Poincaré disk model In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk t ...
of the hyperbolic plane, an ideal triangle is bounded by three circles which intersect the boundary circle at right angles. In the Poincaré half-plane model, an ideal triangle is modeled by an arbelos, the figure between three mutually tangent
semicircle In mathematics (and more specifically geometry), a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180° (equivalently, radians, or a half-turn). It only has one line of symmetr ...
s. In the Beltrami–Klein model of the hyperbolic plane, an ideal triangle is modeled by a Euclidean triangle that is circumscribed by the boundary circle. Note that in the Beltrami-Klein model, the angles at the vertices of an ideal triangle are not zero, because the Beltrami-Klein model, unlike the Poincaré disk and half-plane models, is not conformal i.e. it does not preserve angles.


Real ideal triangle group

The real ideal
triangle group In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triang ...
is the reflection group generated by reflections of the hyperbolic plane through the sides of an ideal triangle. Algebraically, it is isomorphic to the
free product In mathematics, specifically group theory, the free product is an operation that takes two groups ''G'' and ''H'' and constructs a new The result contains both ''G'' and ''H'' as subgroups, is generated by the elements of these subgroups, an ...
of three order-two groups (Schwartz 2001).


References


Bibliography

* {{polygons Hyperbolic geometry Types of triangles