HOME

TheInfoList



OR:

In
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) a ...
, hydrodynamic stability is the field which analyses the stability and the onset of
instability In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds. Not all systems that are not stable are unstable; systems can also be mar ...
of
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of
turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between ...
.See Drazin (2002), ''Introduction to hydrodynamic stability'' The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by
Helmholtz Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Associatio ...
,
Kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
, Rayleigh and Reynolds during the nineteenth century. These foundations have given many useful tools to study hydrodynamic stability. These include
Reynolds number In fluid mechanics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dom ...
, the Euler equations, and the
Navier–Stokes equations In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician Geo ...
. When studying flow stability it is useful to understand more simplistic systems, e.g. incompressible and inviscid fluids which can then be developed further onto more complex flows. Since the 1980s, more computational methods are being used to model and analyse the more complex flows.


Stable and unstable flows

To distinguish between the different states of fluid flow one must consider how the fluid reacts to a disturbance in the initial state.See Chandrasekhar (1961) "Hydrodynamic and Hydromagnetic stability" These disturbances will relate to the initial properties of the system, such as
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
,
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
, and
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
.
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
expressed the qualitative concept of stable and unstable flow nicely when he said:
"when an infinitely small variation of the present state will alter only by an infinitely small quantity the state at some future time, the condition of the system, whether at rest or in motion, is said to be stable but when an infinitely small variation in the present state may bring about a finite difference in the state of the system in a finite time, the system is said to be unstable."
That means that for a stable flow, any infinitely small variation, which is considered a disturbance, will not have any noticeable effect on the initial state of the system and will eventually die down in time. For a fluid flow to be considered stable it must be stable with respect to every possible disturbance. This implies that there exists no
mode Mode ( la, modus meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * '' MO''D''E (magazine)'', a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is ...
of disturbance for which it is unstable. On the other hand, for an unstable flow, any variations will have some noticeable effect on the state of the system which would then cause the disturbance to grow in amplitude in such a way that the system progressively departs from the initial state and never returns to it. This means that there is at least one mode of disturbance with respect to which the flow is unstable, and the disturbance will therefore distort the existing force equilibrium.See V.Shankar – Department of Chemical Engineering IIT Kanpur (2014), "Introduction to hydrodynamic stability"


Determining flow stability


Reynolds number

A key tool used to determine the stability of a flow is the
Reynolds number In fluid mechanics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dom ...
(Re), first put forward by
George Gabriel Stokes Sir George Gabriel Stokes, 1st Baronet, (; 13 August 1819 – 1 February 1903) was an Irish English physicist and mathematician. Born in County Sligo, Ireland, Stokes spent all of his career at the University of Cambridge, where he was the Luc ...
at the start of the 1850s. Associated with
Osborne Reynolds Osborne Reynolds (23 August 1842 – 21 February 1912) was an Irish-born innovator in the understanding of fluid dynamics. Separately, his studies of heat transfer between solids and fluids brought improvements in boiler and condenser design. ...
who further developed the idea in the early 1880s, this dimensionless number gives the ratio of
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
l terms and
viscous The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the in ...
terms.See J.Happel, H.Brenner (2009, 2nd edition) "Low Reynolds number hydrodynamics" In a physical sense, this number is a ratio of the forces which are due to the momentum of the fluid (inertial terms), and the forces which arise from the relative motion of the different layers of a flowing fluid (viscous terms). The equation for this is : R_e = \frac = \frac = \frac = \frac where : \rho = \text : \text = \text : \mu = – measures the fluids resistance to shearing flows : \text = \text : \nu = \text = \frac \mu \rho – measures ratio of dynamic viscosity to the density of the fluid The Reynolds number is useful because it can provide cut off points for when flow is stable or unstable, namely the Critical Reynolds number R_c. As it increases, the amplitude of a disturbance which could then lead to instability gets smaller. At high Reynolds numbers it is agreed that fluid flows will be unstable. High Reynolds number can be achieved in several ways, e.g. if \mu is a small value or if \rho and \text are high values. This means that instabilities will arise almost immediately and the flow will become unstable or turbulent.


Navier–Stokes equation and the continuity equation

In order to analytically find the stability of fluid flows, it is useful to note that hydrodynamic stability has a lot in common with stability in other fields, such as
magnetohydrodynamics Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydro­magnetics) is the study of the magnetic properties and behaviour of electrically conducting fluids. Examples of such magneto­fluids include plasmas, liquid metals, ...
,
plasma physics Plasma ()πλάσμα
, Henry George Liddell, R ...
and elasticity; although the physics is different in each case, the mathematics and the techniques used are similar. The essential problem is modeled by nonlinear
partial differential equations In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
and the stability of known steady and unsteady solutions are examined. The governing equations for almost all hydrodynamic stability problems are the Navier–Stokes equation and the continuity equation. The Navier–Stokes equation is given by: : \frac + (\mathbf \cdot \nabla) \mathbf - \nu \,\nabla^2 \mathbf = - \nabla p_0 + \mathbf. where *\mathbf = *p_0 = *\mathbf = *\nu = *\frac = *\nabla = \left( \frac,\frac, \frac \right) Here \nabla is being used as an operator acting on the velocity field on the left hand side of the equation and then acting on the pressure on the right hand side. and the continuity equation is given by: : \frac + \rho \,\nabla \cdot \mathbf=0 where *\frac = Once again \nabla is being used as an operator on \mathbf and is calculating the
divergence In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of ...
of the velocity. but if the fluid being considered is
incompressible In fluid mechanics or more generally continuum mechanics, incompressible flow ( isochoric flow) refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An eq ...
, which means the density is constant, then \frac=0 and hence: : \nabla \cdot \mathbf = 0 The assumption that a flow is incompressible is a good one and applies to most fluids travelling at most speeds. It is assumptions of this form that will help to simplify the Navier–Stokes equation into differential equations, like Euler's equation, which are easier to work with.


Euler's equation

If one considers a flow which is inviscid, this is where the viscous forces are small and can therefore be neglected in the calculations, then one arrives at Euler's equations: : \frac + (\mathbf \cdot \nabla)\mathbf = -\nabla p_0 Although in this case we have assumed an inviscid fluid this assumption does not hold for flows where there is a boundary. The presence of a boundary causes some viscosity at the
boundary layer In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary cond ...
which cannot be neglected and one arrives back at the Navier–Stokes equation. Finding the solutions to these governing equations under different circumstances and determining their stability is the fundamental principle in determining the stability of the fluid flow itself.


Linear stability analysis

To determine whether the flow is stable or unstable, one often employs the method of linear stability analysis. In this type of analysis, the governing equations and boundary conditions are linearized. This is based on the fact that the concept of 'stable' or 'unstable' is based on an infinitely small disturbance. For such disturbances, it is reasonable to assume that disturbances of different wavelengths evolve independently. (A nonlinear governing equation will allow disturbances of different wavelengths to interact with each other.)


Analysing flow stability


Bifurcation theory

Bifurcation theory Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations. ...
is a useful way to study the stability of a given flow, with the changes that occur in the structure of a given system. Hydrodynamic stability is a series of differential equations and their solutions. A bifurcation occurs when a small change in the parameters of the system causes a qualitative change in its behavior,. The parameter that is being changed in the case of hydrodynamic stability is the Reynolds number. It can be shown that the occurrence of bifurcations falls in line with the occurrence of instabilities.


Laboratory and computational experiments

Laboratory experiments are a very useful way of gaining information about a given flow without having to use more complex mathematical techniques. Sometimes physically seeing the change in the flow over time is just as useful as a numerical approach and any findings from these experiments can be related back to the underlying theory. Experimental analysis is also useful because it allows one to vary the governing parameters very easily and their effects will be visible. When dealing with more complicated mathematical theories such as Bifurcation theory and Weakly nonlinear theory, numerically solving such problems becomes very difficult and time-consuming but with the help of computers this process becomes much easier and quicker. Since the 1980s computational analysis has become more and more useful, the improvement of algorithms which can solve the governing equations, such as the Navier–Stokes equation, means that they can be integrated more accurately for various types of flow.


Applications


Kelvin–Helmholtz instability

The Kelvin–Helmholtz instability (KHI) is an application of hydrodynamic stability that can be seen in nature. It occurs when there are two fluids flowing at different velocities. The difference in velocity of the fluids causes a
shear velocity Shear velocity, also called friction velocity, is a form by which a shear stress may be re-written in units of velocity. It is useful as a method in fluid mechanics to compare true velocities, such as the velocity of a flow in a stream, to a veloc ...
at the
interface Interface or interfacing may refer to: Academic journals * ''Interface'' (journal), by the Electrochemical Society * '' Interface, Journal of Applied Linguistics'', now merged with ''ITL International Journal of Applied Linguistics'' * '' Int ...
of the two layers. The shear velocity of one fluid moving induces a
shear stress Shear stress, often denoted by ( Greek: tau), is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. '' Normal stress'', on ...
on the other which, if greater than the restraining
surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) t ...
, then results in an instability along the interface between them. This motion causes the appearance of a series of overturning ocean waves, a characteristic of the Kelvin–Helmholtz instability. Indeed, the apparent ocean wave-like nature is an example of
vortex In fluid dynamics, a vortex ( : vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in ...
formation, which are formed when a fluid is rotating about some axis, and is often associated with this phenomenon. The Kelvin–Helmholtz instability can be seen in the bands in planetary atmospheres such as
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
and
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousand ...
, for example in the giant red spot vortex. In the atmosphere surrounding the giant red spot there is the biggest example of KHI that is known of and is caused by the shear force at the interface of the different layers of Jupiter's atmosphere. There have been many images captured where the ocean-wave like characteristics discussed earlier can be seen clearly, with as many as 4 shear layers visible.See the Astrophysical journal letters, volume 729, no. 1 (2009), "Magnetic Kelvin–Helmholtz instability at the Sun" Weather satellites take advantage of this instability to measure wind speeds over large bodies of water. Waves are generated by the wind, which shears the water at the interface between it and the surrounding air. The computers on board the satellites determine the roughness of the ocean by measuring the wave height. This is done by using
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
, where a radio signal is transmitted to the surface and the delay from the reflected signal is recorded, known as the "time of flight". From this meteorologists are able to understand the movement of clouds and the expected air turbulence near them.


Rayleigh–Taylor instability

The
Rayleigh–Taylor instability The Rayleigh–Taylor instability, or RT instability (after Lord Rayleigh and G. I. Taylor), is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Drazin ( ...
is another application of hydrodynamic stability and also occurs between two fluids but this time the densities of the fluids are different.See J.Oakley (2004), "Rayleigh–Taylor instability notes" Due to the difference in densities, the two fluids will try to reduce their combined
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potenti ...
.See A.W.Cook, D.Youngs (2009), "Rayleigh–Taylor instability and mixing" The less dense fluid will do this by trying to force its way upwards, and the more dense fluid will try to force its way downwards. Therefore, there are two possibilities: if the lighter fluid is on top the interface is said to be stable, but if the heavier fluid is on top, then the equilibrium of the system is unstable to any disturbances of the interface. If this is the case then both fluids will begin to mix. Once a small amount of heavier fluid is displaced downwards with an equal volume of lighter fluid upwards, the potential energy is now lower than the initial state, therefore the disturbance will grow and lead to the turbulent flow associated with Rayleigh–Taylor instabilities. This phenomenon can be seen in
interstellar gas In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstella ...
, such as the
Crab Nebula The Crab Nebula (catalogue designations M1, NGC 1952, Taurus A) is a supernova remnant and pulsar wind nebula in the constellation of Taurus. The common name comes from William Parsons, 3rd Earl of Rosse, who observed the object in 1842 u ...
. It is pushed out of the
Galactic plane The galactic plane is the plane on which the majority of a disk-shaped galaxy's mass lies. The directions perpendicular to the galactic plane point to the galactic poles. In actual usage, the terms ''galactic plane'' and ''galactic poles'' usual ...
by
magnetic fields A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
and
cosmic rays Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our ...
and then becomes Rayleigh–Taylor unstable if it is pushed past its normal scale height. This instability also explains the
mushroom cloud A mushroom cloud is a distinctive mushroom-shaped flammagenitus cloud of debris, smoke and usually condensed water vapor resulting from a large explosion. The effect is most commonly associated with a nuclear explosion, but any sufficiently ener ...
which forms in processes such as volcanic eruptions and atomic bombs. Rayleigh–Taylor instability has a big effect on the Earth's climate. Winds that come from the coast of
Greenland Greenland ( kl, Kalaallit Nunaat, ; da, Grønland, ) is an island country in North America that is part of the Kingdom of Denmark. It is located between the Arctic and Atlantic oceans, east of the Canadian Arctic Archipelago. Greenland ...
and
Iceland Iceland ( is, Ísland; ) is a Nordic island country in the North Atlantic Ocean and in the Arctic Ocean. Iceland is the most sparsely populated country in Europe. Iceland's capital and largest city is Reykjavík, which (along with its ...
cause evaporation of the ocean surface over which they pass, increasing the salinity of the ocean water near the surface, and making the water near the surface denser. This then generates plumes which drive the
ocean current An ocean current is a continuous, directed movement of sea water generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. Depth conto ...
s. This process acts as a heat pump, transporting warm equatorial water North. Without the ocean overturning,
Northern Europe The northern region of Europe has several definitions. A restrictive definition may describe Northern Europe as being roughly north of the southern coast of the Baltic Sea, which is about 54°N, or may be based on other geographical factors ...
would likely face drastic drops in temperature.


See also

*
List of hydrodynamic instabilities This is a list of hydrodynamic and plasma instabilities named after people (eponymous instabilities). {, class="wikitable" ! Instability !! Field !! Named for , - , Benjamin–Feir instability , , Surface gravity waves , , T. Brooke Benjamin an ...
* Laminar–turbulent transition * Plasma stability *
Squire's theorem In fluid dynamics, Squire's theorem states that of all the perturbations that may be applied to a shear flow (i.e. a velocity field of the form \mathbf = (U(z), 0, 0)), the perturbations which are least stable are two-dimensional, i.e. of the form ...
* Taylor–Couette flow


Notes


References

* * * * * * * * * *


External links

* * *{{Cite web, url = http://home.iitk.ac.in/~vshankar/files/VShankar_Stability_Intro.pdf, title = Introduction to Hydrodynamic stability, date = 2014, accessdate = 31 October 2015, website = , publisher = Department of Mathematics, IIT Kanpur, last = Shankar, first = V Fluid dynamics