HOME

TheInfoList



OR:

Hopf–Rinow theorem is a set of statements about the geodesic completeness of
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space ...
s. It is named after
Heinz Hopf Heinz Hopf (19 November 1894 – 3 June 1971) was a German mathematician who worked on the fields of topology and geometry. Early life and education Hopf was born in Gräbschen, Germany (now , part of Wrocław, Poland), the son of Eliza ...
and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setti ...
s.


Statement

Let (M, g) be a connected and smooth Riemannian manifold. Then the following statements are equivalent: # The
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
and bounded
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
s of M are
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
; # M is a
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setti ...
; # M is geodesically complete; that is, for every p \in M, the exponential map exp''p'' is defined on the entire
tangent space In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
\operatorname_p M. Furthermore, any one of the above implies that given any two points p, q \in M, there exists a length minimizing
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connecti ...
connecting these two points (geodesics are in general critical points for the
length Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Inte ...
functional, and may or may not be minima). In the Hopf–Rinow theorem, the first characterization of completeness deals purely with the topology of the manifold and the boundedness of various sets; the second deals with the existence of minimizers to a certain problem in the
calculus of variations The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
(namely minimization of the length functional); the third deals with the nature of solutions to a certain system of
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
s.


Variations and generalizations

* The Hopf–Rinow theorem is generalized to length-metric spaces the following way: ** If a length-metric space is
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
and
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
then any two points can be connected by a minimizing geodesic, and any bounded
closed set In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a ...
is
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
. :In fact these properties characterize completeness for locally compact length-metric spaces. * The theorem does not hold for infinite-dimensional manifolds. The unit sphere in a
separable Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natur ...
can be endowed with the structure of a
Hilbert manifold In mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold pro ...
in such a way that antipodal points cannot be joined by a length-minimizing geodesic. It was later observed that it is not even automatically true that two points are joined by any geodesic, whether minimizing or not. *The theorem also does not generalize to Lorentzian manifolds: the
Clifton–Pohl torus In geometry, the Clifton–Pohl torus is an example of a compact Lorentzian manifold that is not geodesically complete. While every compact Riemannian manifold is also geodesically complete (by the Hopf–Rinow theorem), this space shows that the sa ...
provides an example (diffeomorphic to the two-dimensional torus) that is compact but not complete.


Notes


References

* * * * * * * * * *


External links

* {{DEFAULTSORT:Hopf-Rinow theorem Metric geometry Theorems in Riemannian geometry