Formats
HDTV may be transmitted in various formats: * 720p (1280 horizontal pixels × 720 lines): 921,600 pixels * 1080i (1920×1080) interlaced scan: 1,036,800 pixels (~1.04 MP). * 1080p (1920×1080) progressive scan: 2,073,600 pixels (~2.07 MP). ** Some countries also use a non-standard CEA resolution, such as 1440×1080i: 777,600 pixels (~0.78 MP) per field or 1,555,200 pixels (~1.56 MP) per frame When transmitted at two megapixels per frame, HDTV provides about five times as many pixels as SD (standard-definition television). The increased resolution provides for a clearer, more detailed picture. In addition, progressive scan and higher frame rates result in a picture with less flicker and better rendering of fast motion. HDTV as is known today first started official broadcasting in 1989 in Japan, under the MUSE/Hi-Vision analog system. HDTV was widely adopted worldwide in the late 2000s.History
The term ''high definition'' once described a series of television systems originating from August 1936; however, these systems were only high definition when compared to earlier systems that were based on mechanical systems with as few as 30 lines of resolution. The ongoing competition between companies and nations to create true "HDTV" spanned the entire 20th century, as each new system became higher definition than the last. In the 2010s, this race has continued with 4K, 5K and 8K systems. The British high-definition TV service started trials in August 1936 and a regular service on 2 November 1936 using both the (mechanical) Baird 240 line sequential scan (later to be inaccurately rechristened 'progressive') and the (electronic) Marconi-EMI 405 line interlaced systems. The Baird system was discontinued in February 1937. In 1938 France followed with its own 441-line system, variants of which were also used by a number of other countries. The USAnalog systems
Early HDTV broadcasting used analog technology, but today it is transmitted digitally and uses video compression. In 1949, France started its transmissions with an 819 lines system (with 737 active lines). The system was monochrome only and was used only on VHF for the first French TV channel. It was discontinued in 1983. In 1958, theJapan
In 1979, the Japanese public broadcaster NHK first developed consumer high-definition television with a 5:3 display aspect ratio. The system, known as Hi-Vision or MUSE after its multiple sub-Nyquist sampling encoding (MUSE) for encoding the signal, required about twice the bandwidth of the existing NTSC system but provided about four times the resolution (1035i/1125 lines). In 1981, the MUSE system was demonstrated for the first time in the United States, using the same 5:3 aspect ratio as the Japanese system. Upon visiting a demonstration of MUSE in Washington, US President Ronald Reagan was impressed and officially declared it "a matter of national interest" to introduce HDTV to the US. NHK taped the 1984 Summer Olympics with a Hi-Vision camera, weighing 40 kg. Satellite test broadcasts started June 4, 1989, the first daily high-definition programs in the world, with regular testing starting on November 25, 1991, or "Hi-Vision Day"dated exactly to refer to its 1,125-lines resolution. Regular broadcasting of BS-9ch commenced on November 25, 1994, which featured commercial and NHK programming. Several systems were proposed as the new standard for the US, including the Japanese MUSE system, but all were rejected by the FCC because of their higher bandwidth requirements. At this time, the number of television channels was growing rapidly and bandwidth was already a problem. A new standard had to be more efficient, needing less bandwidth for HDTV than the existing NTSC.Decrease of analog HD systems
The limited standardization of analog HDTV in the 1990s did not lead to global HDTV adoption as technical and economic constraints at the time did not permit HDTV to use bandwidths greater than normal television. Early HDTV commercial experiments, such as NHK's MUSE, required over four times the bandwidth of a standard-definition broadcast. Despite efforts made to reduce analog HDTV to about twice the bandwidth of SDTV, these television formats were still distributable only by satellite. In Europe too, the HD-MAC standard was considered not technically viable. In addition, recording and reproducing an HDTV signal was a significant technical challenge in the early years of HDTV ( Sony HDVS). Japan remained the only country with successful public broadcasting of analog HDTV, with seven broadcasters sharing a single channel. However, the Hi-Vision/MUSE system also faced commercial issues when it launched on November 25, 1991. Only 2,000 HDTV sets were sold by that day, rather than the enthusiastic 1.32 million estimation. Hi-Vision sets were very expensive, up to US$30,000 each, which contributed to its low consumer adaption. A Hi-Vision VCR from NEC released at Christmas time retailed for US$115,000. In addition, the United States saw Hi-Vision/MUSE as an outdated system and had already made it clear that it would develop an all-digital system. Experts thought the commercial Hi-Vision system in 1992 was already eclipsed by digital technology developed in the U.S. since 1990. This was an American victory against the Japanese in terms of technological dominance. By mid-1993 prices of receivers were still as high as 1.5 million yen (US$15,000). On February 23, 1994, a top broadcasting administrator in Japan admitted failure of its analog-based HDTV system, saying the U.S. digital format would be more likely a worldwide standard. However this announcement drew angry protests from broadcasters and electronic companies who invested heavily into the analog system. As a result, he took back his statement the next day saying that the government will continue to promote Hi-Vision/MUSE. That year NHK started development of digital television in an attempt to catch back up to America and Europe. This resulted in the ISDB format. Japan started digital satellite and HDTV broadcasting in December 2000.Rise of digital compression
High-definition digital television was not possible with uncompressed video, which requires a bandwidth exceeding 1 Gbit/s for studio-quality HDInaugural HDTV broadcast in the United States
HDTV technology was introduced in the United States in the early 1990s and made official in 1993 by the Digital HDTV Grand Alliance, a group of television, electronic equipment, communications companies consisting of AT&T Bell Labs, General Instrument, Philips, Sarnoff, Thomson, Zenith and theEuropean HDTV broadcasts
Between 1988 and 1991, several European organizations were working on discrete cosine transform (DCT) based digital video coding standards for both SDTV and HDTV. The EU 256 project by the CMTT and ETSI, along with research by Italian broadcaster RAI, developed a DCT video codec that broadcast near-studio-quality HDTV transmission at about 70140 Mbit/s. The first HDTV transmissions in Europe, albeit not direct-to-home, began in 1990, when RAI broadcast the 1990 FIFA World Cup using several experimental HDTV technologies, including the digital DCT-based EU 256 codec, the mixed analog-digital HD-MAC technology, and the analog MUSE technology. The matches were shown in 8 cinemas in Italy, where the tournament was played, and 2 in Spain. The connection with Spain was made via the Olympus satellite link fromNotation
HDTV broadcast systems are identified with three major parameters: * Frame size in pixels is defined as ''number of horizontal pixels × number of vertical pixels'', for example ''1280 × 720'' or ''1920 × 1080''. Often the number of horizontal pixels is implied from context and is omitted, as in the case of ''720p'' and ''1080p''. * Scanning system is identified with the letter ''p'' for progressive scanning or ''i'' for interlaced scanning. * Frame rate is identified as number of video frames per second. For interlaced systems, the number of frames per second should be specified, but it is not uncommon to see the field rate incorrectly used instead. If all three parameters are used, they are specified in the following form: '' rame sizescanning system] rame or field rate' or '' rame size rame or field ratescanning system]''. Often, frame size or frame rate can be dropped if its value is implied from context. In this case, the remaining numeric parameter is specified first, followed by the scanning system. For example, ''1920×1080p25'' identifies progressive scanning format with 25 frames per second, each frame being 1,920 pixels wide and 1,080 pixels high. The ''1080i25'' or ''1080i50'' notation identifies interlaced scanning format with 25 frames (50 fields) per second, each frame being 1,920 pixels wide and 1,080 pixels high. The ''1080i30'' or ''1080i60'' notation identifies interlaced scanning format with 30 frames (60 fields) per second, each frame being 1,920 pixels wide and 1,080 pixels high. The ''720p60'' notation identifies progressive scanning format with 60 frames per second, each frame being 720 pixels high; 1,280 pixels horizontally are implied. Systems using 50 Hz support three scanning rates: 50i, 25p and 50p, while 60 Hz systems support a much wider set of frame rates: 59.94i, 60i, 23.976p, 24p, 29.97p, 30p, 59.94p and 60p. In the days of standard-definition television, the fractional rates were often rounded up to whole numbers, e.g. 23.976p was often called 24p, or 59.94i was often called 60i. Sixty Hertz high definition television supports both fractional and slightly different integer rates, therefore strict usage of notation is required to avoid ambiguity. Nevertheless, 29.97p/59.94i is almost universally called 60i, likewise 23.976p is called 24p. For the commercial naming of a product, the frame rate is often dropped and is implied from context (e.g., a ''1080i television set''). A frame rate can also be specified without a resolution. For example, 24p means 24 progressive scan frames per second, and 50i means 25 interlaced frames per second. There is no single standard for HDTV color support. Colors are typically broadcast using a (10-bits per channel) YUV color space but, depending on the underlying image generating technologies of the receiver, are then subsequently converted to a RGB color space using standardized algorithms. When transmitted directly through the Internet, the colors are typically pre-converted to 8-bit RGB channels for additional storage savings with the assumption that it will only be viewed only on a ( sRGB) computer screen. As an added benefit to the original broadcasters, the losses of the pre-conversion essentially make these files unsuitable for professional TV re-broadcasting. Most HDTV systems support resolutions and frame rates defined either in the ATSC table 3, or in EBU specification. The most common are noted below.Display resolutions
At a minimum, HDTV has twice the linear resolution of standard-definition television (SDTV), thus showing greater detail than either analog television or regular DVD. The technical standards for broadcasting HDTV also handle the 16:9 aspect ratio images without using letterboxing or anamorphic stretching, thus increasing the effective image resolution. A very high-resolution source may require more bandwidth than available in order to be transmitted without loss of fidelity. The lossy compression that is used in all digital HDTV storage and transmission systems will distort the received picture when compared to the uncompressed source.Standard frame or field rates
ATSC and DVB define the following frame rates for use with the various broadcast standards: * 23.976 Hz (film-looking frame rate compatible withTypes of media
High-definition image sources include terrestrial broadcast, direct broadcast satellite, digital cable, IPTV, Blu-ray video disc (BD), and internet downloads. In the US, residents in the line of sight of television station broadcast antennas can receive free, over-the-air programming with a television set with an ATSC tuner via a TV aerial. Laws prohibit homeowners' associations and city government from banning the installation of antennas. Standard 35mm photographic film used for cinema projection has a much higher image resolution than HDTV systems, and is exposed and projected at a rate of 24 frames per second (frame/s). To be shown on standard television, in PAL-system countries, cinema film is scanned at the TV rate of 25 frame/s, causing a speedup of 4.1 percent, which is generally considered acceptable. In NTSC-system countries, the TV scan rate of 30 frame/s would cause a perceptible speedup if the same were attempted, and the necessary correction is performed by a technique called 3:2 pulldown: Over each successive pair of film frames, one is held for three video fields (1/20 of a second) and the next is held for two video fields (1/30 of a second), giving a total time for the two frames of 1/12 of a second and thus achieving the correct average film frame rate. Non-cinematic HDTV video recordings intended for broadcast are typically recorded either in 720p or 1080i format as determined by the broadcaster. 720p is commonly used for Internet distribution of high-definition video, because most computer monitors operate in progressive-scan mode. 720p also imposes less strenuous storage and decoding requirements compared to both 1080i and 1080p. 1080p/24, 1080i/30, 1080i/25, and 720p/30 is most often used on Blu-ray Disc.Recording and compression
HDTV can be recorded to D-VHS (Digital-VHS or Data-VHS), W-VHS (analog only), to an HDTV-capable digital video recorder (for example DirecTV's high-definition digital video recorder, Sky HD's set-top box, Dish Network's VIP 622 or VIP 722 high-definition digital video recorder receivers (these set-top boxes allow for HD on the Primary TV and SD on the secondary TV (TV2) without a secondary box on TV2), or TiVo's Series 3 or HD recorders), or an HDTV-ready HTPC. Some cable boxes are capable of receiving or recording two or more broadcasts at a time in HDTV format, and HDTV programming, some included in the monthly cable service subscription price, some for an additional fee, can be played back with the cable company's on-demand feature. The massive amount of data storage required to archive uncompressed streams meant that inexpensive uncompressed storage options were not available to the consumer. In 2008, the Hauppauge 1212 Personal Video Recorder was introduced. This device accepts HD content through component video inputs and stores the content in MPEG-2 format in a .ts file or in a Blu-ray-compatible format .m2ts file on the hard drive or DVD burner of a computer connected to the PVR through a USB 2.0 interface. More recent systems are able to record a broadcast high definition program in its 'as broadcast' format or transcode to a format more compatible with Blu-ray. Analog tape recorders with bandwidth capable of recording analog HD signals, such as W-VHS recorders, are no longer produced for the consumer market and are both expensive and scarce in the secondary market. In the United States, as part of the FCC's ''plug and play'' agreement, cable companies are required to provide customers who rent HD set-top boxes with a set-top box with "functional" FireWire (IEEE 1394) on request. None of the direct broadcast satellite providers have offered this feature on any of their supported boxes, but some cable TV companies have. , boxes are not included in the FCC mandate. This content is protected by encryption known as 5C. This encryption can prevent duplication of content or simply limit the number of copies permitted, thus effectively denying most if not all fair use of the content.See also
* Display motion blur * Glossary of video terms * High Efficiency Video Coding * List of digital television deployments by country * Optimum HDTV viewing distance * Ultra-high-definition television (UHD or UHDTV)References
Further reading
* Joel Brinkley (1997), ''Defining Vision: The Battle for the Future of Television'', New York: Harcourt Brace.External links
;History