Hasse–Minkowski theorem
   HOME

TheInfoList



OR:

The Hasse–Minkowski theorem is a fundamental result in
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777â ...
which states that two
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a ...
s over a
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
are equivalent if and only if they are equivalent ''locally at all places'', i.e. equivalent over every completion of the field (which may be
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
,
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
, or
p-adic In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension ...
). A related result is that a
quadratic space In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to ...
over a number field is
isotropic Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
if and only if it is isotropic locally everywhere, or equivalently, that a quadratic form over a number field nontrivially represents zero if and only if this holds for all completions of the field. The theorem was proved in the case of the field of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
s by
Hermann Minkowski Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number t ...
and generalized to number fields by
Helmut Hasse Helmut Hasse (; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of ''p''-adic numbers to local class field theory and ...
. The same statement holds even more generally for all
global field In mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields: * Algebraic number field: A finite extension of \mathbb *Global function fi ...
s.


Importance

The importance of the Hasse–Minkowski theorem lies in the novel paradigm it presented for answering arithmetical questions: in order to determine whether an equation of a certain type has a solution in rational numbers, it is sufficient to test whether it has solutions over complete fields of real and ''p''-adic numbers, where analytic considerations, such as
Newton's method In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valu ...
and its ''p''-adic analogue,
Hensel's lemma In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number , then this root can be ''lifted'' to a ...
, apply. This is encapsulated in the idea of a
local-global principle In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each ...
, which is one of the most fundamental techniques in
arithmetic geometry In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic variety, alg ...
.


Application to the classification of quadratic forms

The Hasse–Minkowski theorem reduces the problem of classifying quadratic forms over a number field ''K'' up to equivalence to the set of analogous but much simpler questions over
local field In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact t ...
s. Basic invariants of a nonsingular quadratic form are its dimension, which is a positive integer, and its discriminant modulo the squares in K, which is an element of the multiplicative group K*/K*2. In addition, for every
place Place may refer to: Geography * Place (United States Census Bureau), defined as any concentration of population ** Census-designated place, a populated area lacking its own Municipality, municipal government * "Place", a type of street or road ...
''v'' of ''K'', there is an invariant coming from the completion K''v''. Depending on the choice of ''v'', this completion may be the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s R, the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s C, or a
p-adic number In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extensi ...
field, each of which has different kinds of invariants: * ''Case of'' R. By
Sylvester's law of inertia Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real number, real quadratic form that remain invariant (mathematics), invariant under a change of basis. Namely, if ''A'' is the symme ...
, the signature (or, alternatively, the negative index of inertia) is a complete invariant. * ''Case of'' C. All nonsingular quadratic forms of the same dimension are equivalent. * ''Case of'' Q''p'' ''and its
algebraic extension In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, if every element of is a root of a non-zero polynomial with coefficients in . A field ext ...
s''. Forms of the same dimension are classified up to equivalence by their Hasse invariant. These invariants must satisfy some compatibility conditions: a parity relation (the sign of the discriminant must match the negative index of inertia) and a product formula (a local–global relation). Conversely, for every set of invariants satisfying these relations, there is a quadratic form over K with these invariants.


References

* * {{DEFAULTSORT:Hasse-Minkowski theorem Quadratic forms Theorems in number theory Hermann Minkowski