HOME

TheInfoList



OR:

H3K4me3 is an
epigenetic In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are "o ...
modification to the DNA packaging protein
Histone H3 Histone H3 is one of the five main histones involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and a long N-terminal tail, H3 is involved with the structure of the nucleosomes of the 'beads on a strin ...
that indicates tri-
methylation In the chemical sciences, methylation denotes the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These t ...
at the 4th
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −CO ...
residue of the histone H3 protein and is often involved in the
regulation of gene expression Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are wid ...
. The name denotes the addition of three
methyl groups In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula . In formulas, the group is often abbreviated as Me. This hydrocarbon group occurs in many ...
( trimethylation) to the
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −CO ...
4 on the
histone H3 Histone H3 is one of the five main histones involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and a long N-terminal tail, H3 is involved with the structure of the nucleosomes of the 'beads on a strin ...
protein. H3 is used to package DNA in
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bact ...
cells (including human cells), and modifications to the histone alter the accessibility of
genes In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ...
for transcription. H3K4me3 is commonly associated with the activation of
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
of nearby genes. H3K4 trimethylation regulates gene expression through
chromatin remodeling Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried ou ...
by the NURF complex. This makes the DNA in the
chromatin Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in r ...
more accessible for
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fun ...
, allowing the genes to be transcribed and expressed in the cell. More specifically, H3K4me3 is found to positively regulate transcription by bringing histone acetylases and nucleosome remodelling enzymes (NURF). H3K4me3 also plays an important role in the genetic regulation of
stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of ...
potency and lineage. This is because this histone modification is more-so found in areas of the DNA that are associated with development and establishing cell identity.


Nomenclature

H3K4me1 indicates monomethylation of
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −CO ...
4 on histone H3 protein subunit:


Lysine methylation

This diagram shows the progressive methylation of a lysine residue. The tri-methylation denotes the methylation present in H3K4me3. The H3K4me3 modification is created by a lysine-specific
histone methyltransferase Histone methyltransferases (HMT) are histone-modifying enzymes (e.g., histone-lysine N-methyltransferases and histone-arginine N-methyltransferases), that catalyze the transfer of one, two, or three methyl groups to lysine and arginine residues ...
(HMT) transferring three
methyl groups In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula . In formulas, the group is often abbreviated as Me. This hydrocarbon group occurs in many ...
to histone H3. H3K4me3 is methylated by methyltransferase complexes containing a protein
WDR5 WD repeat-containing protein 5 is a protein that in humans is encoded by the ''WDR5'' gene. This gene encodes a member of the WD repeat protein family. WD repeats are minimally conserved regions of approximately 40 amino acids typically bracketed ...
, which contains the
WD40 repeat The WD40 repeat (also known as the WD or beta-transducin repeat) is a short structural motif of approximately 40 amino acids, often terminating in a tryptophan-aspartic acid (W-D) dipeptide. Tandem copies of these repeats typically fold togeth ...
protein motif. WDR5 associates specifically with dimethylated H3K4 and allows further methylation by methyltransferases, allowing for the creation and readout of the H3K4me3 modification. WDR5 activity has been shown to be required for developmental genes, like the
Hox genes Hox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the c ...
, that are regulated by histone methylation.


Epigenetic marker

H3K4me3 is a commonly used histone modification. H3K4me3 is one of the least abundant histone modifications; however, it is highly enriched at active promoters near transcription start sites (TSS) and positively correlated with transcription. H3K4me3 is used as a
histone code The histone code is a hypothesis that the transcription of genetic information encoded in DNA is in part regulated by chemical modifications (known as ''histone marks'') to histone proteins, primarily on their unstructured ends. Together with sim ...
or histone mark in
epigenetic In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are "o ...
studies (usually identified through
chromatin immunoprecipitation Chromatin immunoprecipitation (ChIP) is a type of immunoprecipitation experimental technique used to investigate the interaction between proteins and DNA in the cell. It aims to determine whether specific proteins are associated with specific genom ...
) to identify active
gene promoter In genetics, a promoter is a sequence of DNA to which proteins bind to initiate transcription of a single RNA transcript from the DNA downstream of the promoter. The RNA transcript may encode a protein (mRNA), or can have a function in and of i ...
s. H3K4me3 promotes gene activation through the action of the NURF complex, a protein complex that acts through the PHD finger protein motif to remodel chromatin. This makes the DNA in the
chromatin Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in r ...
accessible for
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fun ...
, allowing the genes to be transcribed and expressed in the cell. Since genes that were important in determining the cell's fate seemed to be next to a lot of H3K4me3 (signal that this gene is important for definite cell type), the algorithm EpiMogrify to predict molecules needed to coax the cells into a given type of differentiation was developed.


Understanding histone modifications

The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as
Histones In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wr ...
. The complexes formed by the looping of the DNA are known as
Chromatin Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in r ...
. The basic structural unit of chromatin is the
Nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone, histone proteins and resembles thread wrapped around a spool. The nucleosome is the f ...
: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues. The carboxyl (C) terminal end of these histones contribute to histone-histone interactions, as well as histone-DNA interactions. The amino (N) terminal charged tails are the site of the post-translational modifications, such as the one seen in H3K4me1.


Role in stem cells and embryogenesis

Regulation of gene expression through H3K4me3 plays a significant role in stem cell fate determination and early embryo development. Pluripotent cells have distinctive patterns of methylation that can be identified through
ChIP-seq ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated pro ...
. This is important in the development of
induced pluripotent stem cells Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka's lab in Kyoto, Japan, who showed in ...
. A way of finding indicators of successful pluripotent induction is through comparing the epigenetic pattern to that of
embryonic stem cells Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre- implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consis ...
. In bivalent chromatin, H3K4me3 is co-localized with the repressive modification
H3K27me3 H3K27me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation of lysine 27 on histone H3 protein. This tri-methylation is associated with the downregulation of nearby genes via t ...
to control gene regulation. H3K4me3 in embryonic cells is part of a bivalent chromatin system, in which regions of DNA are simultaneously marked with activating and repressing histone methylations. This is believed to allow for a flexible system of gene expression, in which genes are primarily repressed, but may be expressed quickly due to H3K4me3 as the cell progresses through development. These regions tend to coincide with transcription factor genes expressed at low levels. Some of these factors, such as the
Hox genes Hox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the c ...
, are essential for control development and cellular differentiation during
embryogenesis An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm c ...
.


DNA repair

H3K4me3 is present at sites of DNA double-strand breaks where it promotes
repair The technical meaning of maintenance involves functional checks, servicing, repairing or replacing of necessary devices, equipment, machinery, building infrastructure, and supporting utilities in industrial, business, and residential installa ...
by the
non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology direct ...
pathway. It has been implicated that the binding of H3K4me3 is necessary for the function of genes such as inhibitor of growth protein 1 (ING1), which act as a
tumor suppressor A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results in a loss or red ...
s and enact DNA repair mechanisms. When DNA damage occurs, DNA damage signalling and repair begins as a result of the modification of histones within the chromatin. Mechanistically, the demethylation of H3K4me3 is used required for specific protein binding and recruitment to DNA damage


Epigenetic implications

The post-translational modification of histone tails by either histone modifying complexes or chromatin remodelling complexes are interpreted by the cell and lead to complex, combinatorial transcriptional output. It is thought that a
Histone code The histone code is a hypothesis that the transcription of genetic information encoded in DNA is in part regulated by chemical modifications (known as ''histone marks'') to histone proteins, primarily on their unstructured ends. Together with sim ...
dictates the expression of genes by a complex interaction between the histones in a particular region. The current understanding and interpretation of histones comes from two large scale projects:
ENCODE The Encyclopedia of DNA Elements (ENCODE) is a public research project which aims to identify functional elements in the human genome. ENCODE also supports further biomedical research by "generating community resources of genomics data, software, ...
and the Epigenomic roadmap. The purpose of the epigenomic study was to investigate epigenetic changes across the entire genome. This led to chromatin states which define genomic regions by grouping the interactions of different proteins and/or histone modifications together. Chromatin states were investigated in Drosophila cells by looking at the binding location of proteins in the genome. Use of
ChIP-sequencing ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated pro ...
revealed regions in the genome characterised by different banding. Different developmental stages were profiled in Drosophila as well, an emphasis was placed on histone modification relevance. A look in to the data obtained led to the definition of chromatin states based on histone modifications. Certain modifications were mapped and enrichment was seen to localize in certain genomic regions. Five core histone modifications were found with each respective one being linked to various cell functions. *
H3K4me1 H3K4me1 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the mono-methylation at the 4th lysine residue of the histone H3 protein and often associated with gene enhancers. Nomenclature H3K4me1 i ...
-primed enhancers * H3K4me3-promoters *
H3K36me3 H3K36me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation at the 36th lysine residue of the histone H3 protein and often associated with gene bodies. There are diverse modific ...
-gene bodies *
H3K27me3 H3K27me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation of lysine 27 on histone H3 protein. This tri-methylation is associated with the downregulation of nearby genes via t ...
-polycomb repression *
H3K9me3 H3K9me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation at the 9th lysine residue of the histone H3 protein and is often associated with heterochromatin. Nomenclature H3K9me3 ...
-heterochromatin The human genome was annotated with chromatin states. These annotated states can be used as new ways to annotate a genome independently of the underlying genome sequence. This independence from the DNA sequence enforces the epigenetic nature of histone modifications. Chromatin states are also useful in identifying regulatory elements that have no defined sequence, such as
enhancers In genetics, an enhancer is a short (50–1500 bp) region of DNA that can be bound by proteins ( activators) to increase the likelihood that transcription of a particular gene will occur. These proteins are usually referred to as transcriptio ...
. This additional level of annotation allows for a deeper understanding of cell specific gene regulation.


Methods

The histone mark H3K4me3 can be detected in a variety of ways: 1.
Chromatin Immunoprecipitation Chromatin immunoprecipitation (ChIP) is a type of immunoprecipitation experimental technique used to investigate the interaction between proteins and DNA in the cell. It aims to determine whether specific proteins are associated with specific genom ...
Sequencing (
ChIP-sequencing ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated pro ...
) measures the amount of DNA enrichment once bound to a targeted protein and immunoprecipitated. It results in good optimization and is used in vivo to reveal DNA-protein binding occurring in cells. ChIP-Seq can be used to identify and quantify various DNA fragments for different histone modifications along a genomic region. 2. Micrococcal Nuclease sequencing (
MNase-seq MNase-seq, short for micrococcal nuclease digestion with deep sequencing, is a molecular biological technique that was first pioneered in 2006 to measure nucleosome occupancy in the ''C. elegans'' genome, and was subsequently applied to the hum ...
) is used to investigate regions that are bound by well positioned nucleosomes. Use of the micrococcal nuclease enzyme is employed to identify nucleosome positioning. Well positioned nucleosomes are seen to have enrichment of sequences. 3. Assay for transposase accessible chromatin sequencing (
ATAC-seq ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) is a technique used in molecular biology to assess genome-wide chromatin accessibility. In 2013, the technique was first described as an alternative advanced method for MNase-s ...
) is used to look in to regions that are nucleosome free (open chromatin). It uses hyperactive Tn5 transposon to highlight nucleosome localisation.


See also

* Methamphetamine#Addiction *
Histone methylation Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decre ...
*
Histone methyltransferase Histone methyltransferases (HMT) are histone-modifying enzymes (e.g., histone-lysine N-methyltransferases and histone-arginine N-methyltransferases), that catalyze the transfer of one, two, or three methyl groups to lysine and arginine residues ...
*
Methyllysine Methyllysine is derivative of the amino acid residue lysine where the sidechain ammonium group has been methylated one or more times. Such methylated lysines play an important role in epigenetics; the methylation of specific lysines of certain hi ...


References

{{reflist, 32em Epigenetics Post-translational modification