Hypernova
   HOME

TheInfoList



OR:

A hypernova is a very energetic
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
which is believed to result from an extreme core collapse scenario. In this case, a massive star (>30
solar mass The solar mass () is a frequently used unit of mass in astronomy, equal to approximately . It is approximately equal to the mass of the Sun. It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxie ...
es) collapses to form a
rotating black hole A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All currently known celestial objects, including planets, stars (Sun), galaxies, and black holes, spin about one ...
emitting twin astrophysical jets and surrounded by an
accretion disk An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and ...
. It is a type of stellar explosion that ejects material with an unusually high
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. Hypernovae release such intense
gamma rays A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
that they often appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.


History

In the 1980s, the term ''hypernova'' was used to describe a theoretical type of supernova now known as a pair-instability supernova. It referred to the extremely high energy of the explosion compared to typical core collapse supernovae. The term had previously been used to describe hypothetical explosions from diverse events such as hyperstars, extremely massive population III stars in the early universe, or from events such as
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
mergers. In February 1997, Dutch-Italian satellite
BeppoSAX BeppoSAX was an Italian–Dutch satellite for X-ray astronomy which played a crucial role in resolving the origin of gamma-ray bursts (GRBs), the most energetic events known in the universe. It was the first X-ray mission capable of simultaneousl ...
was able to trace GRB 970508 to a faint galaxy roughly 6 billion light years away. From analyzing the spectroscopic data for both the GRB 970508 and its host galaxy, Bloom et al. concluded in 1998 that a hypernova was the likely cause. That same year, hypernovae were hypothesized in greater detail by Polish astronomer Bohdan Paczyński as supernovae from rapidly spinning stars. The usage of the term ''hypernova'' from the late 20th century has since been refined to refer to those supernovae with unusually large kinetic energy. The first hypernova observed was SN 1998bw, with a luminosity 100 times higher than a standard Type Ib. This supernova was the first to be associated with a gamma-ray burst (GRB) and it produced a shockwave containing an order of magnitude more energy than a normal supernova. Other scientists prefer to call these objects simply broad-lined type Ic supernovae. Since then the term has been applied to a variety of objects, not all of which meet the standard definition; for example ASASSN-15lh. In 2023, the observation of the highly energetic, non-quasar transient event AT2021lwx was published with an extremely strong emission from mid-infrared to
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
wavelengths and an overall energy of . This object is not thought to be a hypernova; instead, it is likely to be a huge gas cloud being absorbed by a massive black hole. The event was also assigned the random name "ZTF20abrbeie" by the Zwicky Transient Facility. This name and the seeming ferocity of the event led to nickname "Scary Barbie", drawing the attention of the mainstream pres


Properties

Hypernovae are thought to be supernovae with ejecta having a kinetic energy larger than about , an order of magnitude higher than a typical core collapse supernova. The ejected nickel masses are large and the ejection velocity up to 99% of the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. These are typically of type Ic, and some are associated with long-duration gamma-ray bursts. The
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
energy released by these events varies from comparable to other type Ic supernova, to some of the most luminous supernovae known such as SN 1999as. The archetypal hypernova, SN 1998bw, was associated with GRB 980425. Its spectrum showed no hydrogen and no clear
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
features, but strong silicon lines identified it as a type Ic supernova. The main
absorption line Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption (electromagnetic radiation), absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. Th ...
s were extremely broadened and the light curve showed a very rapid brightening phase, reaching the brightness of a
type Ia supernova A Type Ia supernova (read: "type one-A") is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white ...
at day 16. The total ejected mass was about and the mass of nickel ejected about . All supernovae associated with GRBs have shown the high-energy ejecta that characterises them as hypernovae. Unusually bright radio supernovae have been observed as counterparts to hypernovae, and have been termed "radio hypernovae".


Astrophysical models

Models for hypernova focus on the efficient transfer of energy into the ejecta. In normal core collapse supernovae, 99% of
neutrinos A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it ...
generated in the collapsing core escape without driving the ejection of material. It is thought that rotation of the supernova progenitor drives a jet that accelerates material away from the explosion at close to the speed of light. Binary systems are increasingly being studied as the best method for both stripping stellar envelopes to leave a bare carbon-oxygen core, and for inducing the necessary spin conditions to drive a hypernova.


Collapsar model

The collapsar model describes a type of supernova that produces a gravitationally collapsed object, or
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
. The word "collapsar", short for "collapsed
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
", was formerly used to refer to the end product of stellar
gravitational collapse Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formati ...
, a stellar-mass black hole. The word is now sometimes used to refer to a specific model for the collapse of a fast-rotating star. When core collapse occurs in a star with a core at least around fifteen times the
Sun's mass The solar mass () is a frequently used unit of mass in astronomy, equal to approximately . It is approximately equal to the mass of the Sun. It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies a ...
() — though chemical composition and rotational rate are also significant — the explosion energy is insufficient to expel the outer layers of the star, and it will collapse into a black hole without producing a visible supernova outburst. A star with a core mass slightly below this level — in the range of — will undergo a supernova explosion, but so much of the ejected mass falls back onto the core remnant that it still collapses into a black hole. If such a star is rotating slowly, then it will produce a faint supernova, but if the star is rotating quickly enough, then the fallback to the black hole will produce
relativistic jets An astrophysical jet is an astronomy, astronomical phenomenon where outflows of Ionization, ionised matter are emitted as extended beams along the rotation, axis of rotation. When this greatly accelerated matter in the beam approaches the speed of ...
. Those powerful jets plough through stellar material creating strong shock waves, with the vigorous winds of newly-formed 56Ni blowing off the accretion disk, detonating the hypernova explosion. The ejected radioactive decay of 56Ni renders the visible outburst substantially more luminous than a standard supernova. The jets also beam high energy particles and gamma rays directly outward and thereby produce
x-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
or gamma-ray bursts; the jets can last for several seconds or longer and correspond to long-duration gamma-ray bursts, but they do not appear to explain short-duration gamma-ray bursts.


Binary models

The mechanism for producing the stripped progenitor, a carbon-oxygen star lacking any significant hydrogen or helium, of type Ic supernovae was once thought to be an extremely evolved massive star, for example a type WO Wolf-Rayet star whose dense
stellar wind A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
expelled all its outer layers. Observations have failed to detect any such progenitors. It is still not conclusively shown that the progenitors are actually a different type of object, but several cases suggest that lower-mass "helium giants" are the progenitors. These stars are not sufficiently massive to expel their envelopes simply by stellar winds, and they would be stripped by mass transfer to a binary companion. Helium giants are increasingly favoured as the progenitors of type Ib supernovae, but the progenitors of type Ic supernovae is still uncertain. One proposed mechanism for producing gamma-ray bursts is induced
gravitational collapse Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formati ...
, where a
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
is triggered to collapse into a
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
by the core collapse of a close companion consisting of a stripped carbon-oxygen core. The induced neutron star collapse allows for the formation of jets and high-energy
ejecta Ejecta (; ) are particles ejected from an area. In volcanology, in particular, the term refers to particles including pyroclastic rock, pyroclastic materials (tephra) that came out of a explosive eruption, volcanic explosion and magma eruption v ...
that have been difficult to model from a single star.


See also

* * *


References


Further reading

* * * * {{Portal bar, Physics, Astronomy, Outer space Stellar phenomena Hypergiants Wolf–Rayet stars Stellar evolution Star types Astronomical events