In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, especially
homotopy theory
In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
, the homotopy fiber (sometimes called the mapping fiber)
[Joseph J. Rotman, ''An Introduction to Algebraic Topology'' (1988) Springer-Verlag ''(See Chapter 11 for construction.)''] is part of a construction that associates a
fibration
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics.
Fibrations are used, for example, in Postnikov systems or obstruction theory.
In this article, all ma ...
to an arbitrary
continuous function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
of
topological spaces
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called point ...
. It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groups
Moreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished triangle
gives a long exact sequence analogous to the long exact sequence of homotopy groups. There is a
dual construction called the
homotopy cofiber.
Construction
The homotopy fiber has a simple description for a continuous map
. If we replace
by a fibration, then the homotopy fiber is simply the fiber of the replacement fibration. We recall this construction of replacing a map by a fibration:
Given such a map, we can replace it with a
fibration
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics.
Fibrations are used, for example, in Postnikov systems or obstruction theory.
In this article, all ma ...
by defining the
mapping path space to be the set of pairs
where
and
(for