
Modern spectroscopy in the Western world started in the 17th century. New designs in
optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
, specifically
prisms, enabled systematic observations of the
solar spectrum
Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible light perceptible to the human eye as well as invisible infrared (typically perc ...
.
Isaac Newton
Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
first applied the word ''
spectrum
A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
'' to describe the
rainbow
A rainbow is an optical phenomenon caused by refraction, internal reflection and dispersion of light in water droplets resulting in a continuous spectrum of light appearing in the sky. The rainbow takes the form of a multicoloured circular ...
of
color
Color (or colour in English in the Commonwealth of Nations, Commonwealth English; American and British English spelling differences#-our, -or, see spelling differences) is the visual perception based on the electromagnetic spectrum. Though co ...
s that combine to form white light. During the early 1800s,
Joseph von Fraunhofer
Joseph Ritter von Fraunhofer (; ; 6 March 1787 – 7 June 1826) was a German physicist and optical lens manufacturer. He made optical glass, an achromatic telescope, and objective lenses. He developed diffraction grating and also invented the ...
conducted experiments with dispersive
spectrometer
A spectrometer () is a scientific instrument used to separate and measure Spectrum, spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomeno ...
s that enabled spectroscopy to become a more precise and quantitative scientific technique. Since then, spectroscopy has played and continues to play a significant role in
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
,
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
and
astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
. Fraunhofer observed and measured
dark lines in the Sun's spectrum, which now bear his name although several of them were observed earlier by
Wollaston.
Origins and experimental development
The Romans were already familiar with the ability of a prism to generate a rainbow of colors. Newton is traditionally regarded as the founder of spectroscopy, but he was not the first scientist who studied and reported on the solar spectrum. The works of
Athanasius Kircher
Athanasius Kircher (2 May 1602 – 27 November 1680) was a German Society of Jesus, Jesuit scholar and polymath who published around 40 major works of comparative religion, geology, and medicine. Kircher has been compared to fellow Jes ...
(1646),
Jan Marek Marci
Jan Marek Marci (; June 13, 1595April 10, 1667), or Johannes Marcus Marci, was a Bohemian doctor and scientist, rector of the Charles University in Prague, University of Prague, and official physician to the Holy Roman Emperors. The crater Marci ...
(1648),
Robert Boyle
Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, Alchemy, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the foun ...
(1664), and
Francesco Maria Grimaldi
Francesco Maria Grimaldi (2 April 1618 – 28 December 1663) was an Italian Jesuit priest, mathematician and physicist who taught at the Jesuit college in Bologna. He was born in Bologna to Paride Grimaldi and Anna Cattani.
Work
Between 164 ...
(1665), predate Newton's optics experiments (1666–1672). Newton published his experiments and theoretical explanations of
dispersion of light in his ''
Opticks
''Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light'' is a collection of three books by Isaac Newton that was published in English language, English in 1704 (a scholarly Latin translation appeared in 1706). ...
''. His experiments demonstrated that white light could be split up into component colors by means of a prism and that these components could be recombined to generate white light. He demonstrated that the prism is not imparting or creating the colors but rather separating constituent parts of the white light.
Newton's
corpuscular theory of light was gradually succeeded by the
wave theory. It was not until the 19th century that the quantitative measurement of dispersed light was recognized and standardized. As with many subsequent spectroscopy experiments, Newton's sources of white light included
flame
A flame () is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction made in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density, they are then considered plasm ...
s and
star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s, including the
Sun
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
. Subsequent studies of the nature of light include those of
Hooke,
Huygens,
Young. Subsequent experiments with prisms provided the first indications that spectra were associated uniquely with chemical constituents. Scientists observed the emission of distinct patterns of colour when
salts
In chemistry, a salt or ionic compound is a chemical compound consisting of an assembly of positively charged ions ( cations) and negatively charged ions (anions), which results in a compound with no net electric charge (electrically neutral). ...
were added to
alcohol
Alcohol may refer to:
Common uses
* Alcohol (chemistry), a class of compounds
* Ethanol, one of several alcohols, commonly known as alcohol in everyday life
** Alcohol (drug), intoxicant found in alcoholic beverages
** Alcoholic beverage, an alco ...
flames.
Early 19th century (1800–1829)
In 1802,
William Hyde Wollaston
William Hyde Wollaston (; 6 August 1766 – 22 December 1828) was an English chemist and physicist who is famous for discovering the chemical elements palladium and rhodium. He also developed a way to process platinum ore into malleable i ...
built a spectrometer, improving on Newton's model, that included a lens to focus the Sun's spectrum on a screen.
[ Upon use, Wollaston realized that the colors were not spread uniformly, but instead had missing patches of colors, which appeared as dark bands in the sun's spectrum.] At the time, Wollaston believed these lines to be natural boundaries between the colors, but this hypothesis was later ruled out in 1815 by Fraunhofer's work.
Joseph von Fraunhofer
Joseph Ritter von Fraunhofer (; ; 6 March 1787 – 7 June 1826) was a German physicist and optical lens manufacturer. He made optical glass, an achromatic telescope, and objective lenses. He developed diffraction grating and also invented the ...
made a significant experimental leap forward by replacing a prism with a diffraction grating
In optics, a diffraction grating is an optical grating with a periodic structure that diffraction, diffracts light, or another type of electromagnetic radiation, into several beams traveling in different directions (i.e., different diffractio ...
as the source of wavelength dispersion. Fraunhofer built off the theories of light interference developed by Thomas Young, François Arago
Dominique François Jean Arago (), known simply as François Arago (; Catalan: , ; 26 February 17862 October 1853), was a French mathematician, physicist, astronomer, freemason, supporter of the Carbonari revolutionaries and politician.
Early l ...
and Augustin-Jean Fresnel
Augustin-Jean Fresnel (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Isaac Newton, Newton's c ...
. He conducted his own experiments to demonstrate the effect of passing light through a single rectangular slit, two slits, and so forth, eventually developing a means of closely spacing thousands of slits to form a diffraction grating. The interference achieved by a diffraction grating both improves the spectral resolution
The spectral resolution of a spectrograph, or, more generally, of a frequency spectrum, is a measure of its ability to resolve features in the electromagnetic spectrum. It is usually denoted by \Delta\lambda, and is closely related to the resolvi ...
over a prism and allows for the dispersed wavelengths to be quantified. Fraunhofer's establishment of a quantified wavelength scale paved the way for matching spectra observed in multiple laboratories, from multiple sources (flames and the sun) and with different instruments. Fraunhofer made and published systematic observations of the solar spectrum, and the dark bands he observed and specified the wavelengths of are still known as Fraunhofer lines
The Fraunhofer lines are a set of spectral absorption lines. They are dark absorption lines, seen in the optical spectrum of the Sun, and are formed when atoms in the solar atmosphere absorb light being emitted by the solar photosphere. The l ...
.
Throughout the early 1800s, a number of scientists pushed the techniques and understanding of spectroscopy forward. In the 1820s, both John Herschel
Sir John Frederick William Herschel, 1st Baronet (; 7 March 1792 – 11 May 1871) was an English polymath active as a mathematician, astronomer, chemist, inventor and experimental photographer who invented the blueprint and did botanical work. ...
and William H. F. Talbot made systematic observations of salts using flame spectroscopy.
Mid-19th century (1830–1869)
In 1835, Charles Wheatstone
Sir Charles Wheatstone (; 6 February 1802 – 19 October 1875) was an English physicist and inventor best known for his contributions to the development of the Wheatstone bridge, originally invented by Samuel Hunter Christie, which is used to m ...
reported that different metals could be easily distinguished by the different bright lines in the emission spectra of their sparks, thereby introducing an alternative mechanism to flame spectroscopy. In 1849, J. B. L. Foucault experimentally demonstrated that absorption and emission lines appearing at the same wavelength are both due to the same material, with the difference between the two originating from the temperature of the light source. In 1853, the Swedish physicist Anders Jonas Ångström
Anders Jonas Ångström (; ; 13 August 1814 – 21 June 1874) was a Swedish physicist and one of the founders of the science of spectroscopy.P.Murdin (2000): "Angstrom" chapter in ''Encyclopedia of Astronomy and Astrophysics''.
Ångström is a ...
presented observations and theories about gas spectra in his work ''Optiska Undersökningar'' (Optical investigations) to the Royal Swedish Academy of Sciences">Stockolm Academy --> Royal Swedish Academy of Sciences. Ångström postulated that an incandescent gas emits luminous rays of the same wavelength as those it can absorb. Ångström was unaware of Foucalt's experimental results. At the same time George Stokes and William Thomson (Kelvin) were discussing similar postulates. Ångström also measured the emission spectrum from hydrogen later labeled the Balmer lines">William Thomson, 1st Baron Kelvin">William Thomson (Kelvin) were discussing similar postulates. Ångström also measured the emission spectrum from hydrogen later labeled the Balmer lines. In 1854 and 1855, David Alter published observations on the spectra of metals and gases, including an independent observation of the Balmer lines of hydrogen.
The systematic attribution of spectra to chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s began in the 1860s with the work of German physicists Robert Bunsen
Robert Wilhelm Eberhard Bunsen (;
30 March 1811
– 16 August 1899) was a German chemist. He investigated emission spectra of heated elements, and discovered caesium (in 1860) and rubidium (in 1861) with the physicist Gustav Kirchhoff. The Bu ...
and Gustav Kirchhoff
Gustav Robert Kirchhoff (; 12 March 1824 – 17 October 1887) was a German chemist, mathematician, physicist, and spectroscopist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body ...
, who found that Fraunhofer lines correspond to emission spectral lines observed in laboratory light sources. This laid way for spectrochemical analysis in laboratory and astrophysical science. Bunsen and Kirchhoff applied the optical techniques of Fraunhofer, Bunsen's improved flame source and a highly systematic experimental procedure to a detailed examination of the spectra of chemical compounds. They established the linkage between chemical elements and their unique spectral patterns. In the process, they established the technique of analytical spectroscopy. In 1860, they published their findings on the spectra of eight elements and identified these elements' presence in several natural compounds.[See:
*
* See als]
Plate II
following p. 168. They demonstrated that spectroscopy could be used for trace chemical analysis and several of the chemical elements they discovered were previously unknown. Kirchhoff and Bunsen also definitively established the link between absorption and emission lines, including attributing solar absorption lines to particular elements based on their corresponding spectra. Kirchhoff went on to contribute fundamental research on the nature of spectral absorption and emission, including what is now known as Kirchhoff's law of thermal radiation
In heat transfer, Kirchhoff's law of thermal radiation refers to wavelength-specific radiative emission and absorption by a material body in thermodynamic equilibrium, including radiative exchange equilibrium. It is a special case of Onsage ...
. Kirchhoff's applications of this law to spectroscopy are captured in three laws of spectroscopy:
#An incandescent solid, liquid or gas under high pressure emits a continuous spectrum
In the physical sciences, the term ''spectrum'' was introduced first into optics by Isaac Newton in the 17th century, referring to the range of colors observed when white light was dispersion (optics), dispersed through a prism (optics), prism. ...
.
#A hot gas under low pressure emits a "bright-line" or emission-line spectrum.
#A continuous spectrum source viewed through a cool, low-density gas produces an absorption-line spectrum.
In the 1860s the husband-and-wife team of William
William is a masculine given name of Germanic languages, Germanic origin. It became popular in England after the Norman Conquest, Norman conquest in 1066,All Things William"Meaning & Origin of the Name"/ref> and remained so throughout the Middle ...
and Margaret Huggins used spectroscopy to determine that the stars were composed of the same elements as found on earth. They also used the non-relativistic Doppler shift
The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described t ...
(redshift
In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and e ...
) equation on the spectrum of the star Sirius
Sirius is the brightest star in the night sky. Its name is derived from the Greek word (Latin script: ), meaning 'glowing' or 'scorching'. The star is designated Canis Majoris, Latinized to Alpha Canis Majoris, and abbr ...
in 1868 to determine its axial speed. They were the first to take a spectrum of a planetary nebula when the Cat's Eye Nebula (NGC 6543) was analyzed. Using spectral techniques, they were able to distinguish nebula
A nebula (; or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the Pillars of Creation in ...
e from stars.
August Beer observed a relationship between light absorption and concentration and created the color comparator which was later replaced by a more accurate device called the spectrophotometer.
Late 19th century (1870–1899)
In the 19th century new developments such as the discovery of photography, Rowland's invention of the concave diffraction grating
In optics, a diffraction grating is an optical grating with a periodic structure that diffraction, diffracts light, or another type of electromagnetic radiation, into several beams traveling in different directions (i.e., different diffractio ...
, and Schumann's works on discovery of vacuum ultraviolet (fluorite for prisms and lenses, low-gelatin photographic plate
Photographic plates preceded film as the primary medium for capturing images in photography. These plates, made of metal or glass and coated with a light-sensitive emulsion, were integral to early photographic processes such as heliography, d ...
s and absorption of UV in air below 185 nm) made advance to shorter wavelengths very fast.
In 1871, Stoney suggested using a wavenumber scale for spectra and Hartley
Hartley may refer to:
Places Australia
*Hartley, New South Wales
* Hartley, South Australia
** Electoral district of Hartley, a state electoral district
Canada
* Hartley Bay, British Columbia
United Kingdom
* Hartley, Cumbria
* Hartley, P ...
followed up, finding constant wave-number differences in the triplets of zinc.
Liveing and
Dewar observed that alkali spectra appeared to form a series and Alfred Cornu found similar structure in the spectra of thallium and aluminum, setting the stage for Balmer to discover a relation connecting wavelengths in the visible hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
spectrum. In 1890, Kayser and Runge organized the series reported by Liveing and Dewar using names like 'Principal', 'diffuse', and 'sharp' series. Rydberg gave a formula for wave-numbers of all spectral series of all the alkalis and hydrogen.[
In 1895, the German physicist ]Wilhelm Conrad Röntgen
Wilhelm may refer to:
People and fictional characters
* William Charles John Pitcher, costume designer known professionally as "Wilhelm"
* Wilhelm (name), a list of people and fictional characters with the given name or surname
Other uses
* Wilhe ...
discovered and extensively studied X-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s, which were later used in X-ray spectroscopy
X-ray spectroscopy is a general term for several Spectroscopy, spectroscopic techniques for characterization of materials by using x-ray radiation.
Characteristic X-ray spectroscopy
When an electron from the inner shell of an atom is excited b ...
. One year later, in 1896, French physicist Antoine Henri Becquerel
Antoine Henri Becquerel ( ; ; 15 December 1852 – 25 August 1908) was a French nuclear physicist who shared the 1903 Nobel Prize in Physics with Marie and Pierre Curie for his discovery of radioactivity.
Biography
Family and education
Becqu ...
discovered radioactivity, and Dutch physicist Pieter Zeeman
Pieter Zeeman ( ; ; 25 May 1865 – 9 October 1943) was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Hendrik Lorentz for their discovery and theoretical explanation of the Zeeman effect.
Childhood and youth
Pieter Zeeman was ...
observed spectral lines being split by a magnetic field.
In 1897, theoretical physicist, Joseph Larmor
Sir Joseph Larmor (; 11 July 1857 – 19 May 1942) was an Irish mathematician and physicist who made breakthroughs in the understanding of electricity, dynamics, thermodynamics, and the electron theory of matter. His most influential work was ...
explained the splitting of the spectral line
A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission (electromagnetic radiation), emission or absorption (electromagnetic radiation), absorption of light in a narrow frequency ...
s in a magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
by the oscillation
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
of electrons.
Physicist, Joseph Larmor, created the first solar system model of the atom in 1897. He also postulated the proton, calling it a “positive electron.” He said the destruction of this type of atom making up matter “is an occurrence of infinitely small probability.”
Early 20th century (1900–1950)
The first decade of the 20th century brought the basics of quantum theory ( Planck, Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
) and interpretation of spectral series of hydrogen by Lyman in VUV and by Paschen in infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
. Ritz formulated the combination principle.
John William Nicholson
John William Nicholson, FRS (1 November 1881 – 3 October 1955) was an English mathematician and physicist. Nicholson is noted as the first to create an atomic model that quantized angular momentum as h/2π. Nicholson was also the first to cre ...
had created an atomic model in 1912, a year before Niels Bohr
Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
, that was both nuclear and quantum in which he showed that electron oscillations in his atom matched the solar and nebular spectral lines. Bohr had been working on his atom during this period, but Bohr's model had only a single ground state and no spectra until he incorporated the Nicholson model and referenced the Nicholson papers in his model of the atom.
In 1913, Bohr formulated his quantum mechanical model of atom. This stimulated empirical term analysis. Bohr published a theory of the hydrogen-like atoms that could explain the observed wavelengths of spectral lines due to electrons transitioning from different energy states. In 1937 "E. Lehrer created the first fully-automated spectrometer" to help more accurately measure spectral lines. With the development of more advanced instruments such as photo-detectors scientists were then able to more accurately measure specific wavelength absorption of substances.
Development of quantum mechanics
Between 1920 and 1930 fundamental concepts of quantum mechanics were developed by Pauli, Heisenberg, Schrödinger, and Dirac. Understanding of the spin and exclusion principle allowed conceiving how electron shells of atoms are filled with the increasing atomic number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
.
Multiply ionized atoms
This branch of spectroscopy
Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.
Spectro ...
deals with radiation related to atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s that are stripped of several electrons (multiply ionized atoms (MIA), multiply charged ions, highly charged ion
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s). These are observed in very hot plasmas (laboratory or astrophysical) or in accelerator experiments ( beam-foil, electron beam ion trap (EBIT)). The lowest exited electron shells of such ions decay into stable ground states producing photons in VUV, EUV and soft X-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
spectral regions (so-called resonance transitions).
Structure studies
Further progress in studies of atomic structure was in tight connection with the advance to shorter wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
in EUV region. Millikan, Sawyer, Bowen used electric discharge
In electromagnetism, an electric discharge is the release and transmission of electricity in an applied electric field through a medium such as a gas (i.e., an outgoing flow of electric current through a non-metal medium).American Geophysical U ...
s in vacuum to observe some emission spectral lines down to 13 nm they prescribed to stripped atoms. In 1927 Osgood and Hoag reported on grazing incidence concave grating spectrographs and photographed lines down to 4.4 nm (Kα of carbon). Dauvillier used a fatty acid crystal of large crystal grating space to extend soft x-ray spectra up to 12.1 nm, and the gap was closed. In the same period Manne Siegbahn constructed a very sophisticated grazing incidence spectrograph that enabled Ericson and Edlén to obtain spectra of vacuum spark with high quality and to reliably identify lines of multiply ionized atoms up to O VI, with five stripped electrons. Grotrian developed his graphic presentation of energy structure of the atoms. Russel and Saunders proposed their coupling scheme for the spin-orbit interaction and their generally recognized notation for spectral terms.
Accuracy
Theoretical quantum-mechanical calculations become rather accurate to describe the energy structure of some simple electronic configurations. The results of theoretical developments were summarized by Condon and Shortley in 1935.
Edlén thoroughly analyzed spectra of MIA for many chemical elements and derived regularities in energy structures of MIA for many isoelectronic sequences (ions with the same number of electrons, but different nuclear charges). Spectra of rather high ionization stages (e.g. Cu XIX) were observed.
The most exciting event was in 1942, when Edlén proved the identification of some solar coronal lines on the basis of his precise analyses of spectra of MIA. This implied that the solar corona
In astronomy, a corona (: coronas or coronae) is the outermost layer of a star's Stellar atmosphere, atmosphere. It is a hot but relatively luminosity, dim region of Plasma (physics), plasma populated by intermittent coronal structures such as so ...
has a temperature of a million degrees, and strongly advanced understanding of solar and stellar physics.
After the WW II experiments on balloons and rockets were started to observe the VUV radiation of the Sun. (See X-ray astronomy
X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to ...
). More intense research continued since 1960 including spectrometer
A spectrometer () is a scientific instrument used to separate and measure Spectrum, spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomeno ...
s on satellites.
In the same period the laboratory spectroscopy of MIA becomes relevant as a diagnostic tool for hot plasmas of thermonuclear devices (see Nuclear fusion
Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
) which begun with building Stellarator
A stellarator confines Plasma (physics), plasma using external magnets. Scientists aim to use stellarators to generate fusion power. It is one of many types of magnetic confinement fusion devices. The name "stellarator" refers to stars because ...
in 1951 by Spitzer, and continued with tokamak
A tokamak (; ) is a device which uses a powerful magnetic field generated by external magnets to confine plasma (physics), plasma in the shape of an axially symmetrical torus. The tokamak is one of several types of magnetic confinement fusi ...
s, z-pinches and the laser produced plasmas. Progress in ion accelerators stimulated beam-foil spectroscopy as a means to measure lifetimes of exited states of MIA. Many various data on highly exited energy levels, autoionization
Autoionization is a process by which an atom or a molecule in an excited state spontaneously emits one of the outer-shell electrons, thus going from a state with charge to a state with charge , for example from an electrically neutral sta ...
and inner-core ionization states were obtained.
Electron beam ion trap
Simultaneously theoretical and computational approaches provided data necessary for identification of new spectra and interpretation of observed line intensities. New laboratory and theoretical data become very useful for spectral observation in space. It was a real upheaval of works on MIA in USA, England, France, Italy, Israel, Sweden, Russia and other countries
A new page in the spectroscopy of MIA may be dated as 1986 with development of EBIT (Levine and Marrs, LLNL
Lawrence Livermore National Laboratory (LLNL) is a Federally funded research and development centers, federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now i ...
) due to a favorable composition of modern high technologies such as cryogenics
In physics, cryogenics is the production and behaviour of materials at very low temperatures.
The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a universa ...
, ultra-high vacuum
Ultra-high vacuum (often spelled ultrahigh in American English, UHV) is the vacuum regime characterised by pressures lower than about . UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the mean free path of ...
, superconducting magnet
A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much ...
s, powerful electron beams
Cathode rays are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitted from the ca ...
and semiconductor detector
In ionizing radiation detection physics, a semiconductor detector is a device that uses a semiconductor (usually silicon or germanium) to measure the effect of incident charged particles or photons.
Semiconductor detectors find broad applicati ...
s. Very quickly EBIT sources were created in many countries (see NIST
The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical s ...
summary for many details as well as reviews.)
A wide field of spectroscopic research with EBIT is enabled including achievement of highest grades of ionization (U92+), wavelength measurement, hyperfine structure
In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole int ...
of energy levels, quantum electrodynamic studies, ionization cross-sections (CS) measurements, electron-impact excitation CS, X-ray polarization, relative line intensities, dielectronic recombination CS, magnetic octupole decay, lifetimes of forbidden transitions, charge-exchange recombination, etc.
Infrared and Raman spectroscopy
Many early scientists who studied the IR spectra of compounds had to develop and build their own instruments to be able to record their measurements making it very difficult to get accurate measurements. During World War II
World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
, the U.S. government contracted different companies to develop a method for the polymerization of butadiene
1,3-Butadiene () is the organic compound with the formula CH2=CH-CH=CH2. It is a colorless gas that is easily condensed to a liquid. It is important industrially as a precursor to synthetic rubber. The molecule can be viewed as the union of two ...
to create rubber
Rubber, also called India rubber, latex, Amazonian rubber, ''caucho'', or ''caoutchouc'', as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds.
Types of polyisoprene ...
, but this could only be done through analysis of C4 hydrocarbon isomers. These contracted companies started developing optical instruments and eventually created the first infrared spectrometers. With the development of these commercial spectrometers, Infrared Spectroscopy became a more popular method to determine the "fingerprint" for any molecule. Raman spectroscopy was first observed in 1928 by Sir Chandrasekhara Venkata Raman
Sir Chandrasekhara Venkata Raman ( ; ; 7 November 1888 – 21 November 1970) was an Indian physicist known for his work in the field of light scattering.
Using a spectrograph that he developed, he and his student K. S. Krishnan discovered tha ...
in liquid substances and also by "Grigory Landsberg and Leonid Mandelstam in crystals". Raman spectroscopy is based on the observation of the raman effect which is defined as "The intensity of the scattered light is dependent on the amount of the polarization potential change". The raman spectrum records light intensity vs. light frequency (wavenumber) and the wavenumber shift is characteristic to each individual compound.
Laser spectroscopy
Laser spectroscopy is a spectroscopic technique that uses laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
s to be able determine the emitted frequencies of matter. The laser was invented because spectroscopists took the concept of its predecessor, the maser
A maser is a device that produces coherent electromagnetic waves ( microwaves), through amplification by stimulated emission. The term is an acronym for microwave amplification by stimulated emission of radiation. Nikolay Basov, Alexander Pr ...
, and applied it to the visible and infrared ranges of light. The maser was invented by Charles Townes
Charles Hard Townes (July 28, 1915 – January 27, 2015) was an American physicist. Townes worked on the theory and application of the maser, for which he obtained the fundamental patent, and other work in quantum electronics associated with b ...
and other spectroscopists to stimulate matter to determine the radiative frequencies that specific atoms and molecules emitted. While working on the maser, Townes realized that more accurate detections were possible as the frequency of the microwave emitted increased. This led to an idea a few years later to use the visible and eventually the infrared ranges of light for spectroscopy that became a reality with the help of Arthur Schawlow. Since then, lasers have gone on to significantly advance experimental spectroscopy. The laser light allowed for much higher precision experiments specifically in the uses of studying collisional effects of light as well as being able to accurately detect specific wavelengths and frequencies of light, allowing for the invention of devices such as laser atomic clocks. Lasers also made spectroscopy that used time methods more accurate by using speeds or decay times of photons at specific wavelengths and frequencies to keep time. Laser spectroscopic techniques have been used for many different applications. One example is using laser spectroscopy to detect compounds in materials. One specific method is called Laser-induced Fluorescence Spectroscopy, and uses spectroscopic methods to be able to detect what materials are in a solid, liquid, or gas, ''in situ
is a Latin phrase meaning 'in place' or 'on site', derived from ' ('in') and ' ( ablative of ''situs'', ). The term typically refers to the examination or occurrence of a process within its original context, without relocation. The term is use ...
''. This allows for direct testing of materials, instead of having to take the material to a lab to figure out what the solid, liquid, or gas is made of.
See also
* List of spectroscopists
*Mass spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
*History of quantum mechanics
The history of quantum mechanics is a fundamental part of the History of physics#20th century: birth of modern physics, history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual ...
References
External links
MIT Spectroscopy Lab's History of Spectroscopy
Spectroscopy Magazine's "A Timeline of Atomic Spectroscopy"
{{History of chemistry
Spectroscopy
Quantum mechanics
History of chemistry
History of physics
Plasma diagnostics
Ionizing radiation