H-space
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an H-space is a homotopy-theoretic version of a generalization of the notion of
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two str ...
, in which the axioms on
associativity In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement f ...
and inverses are removed.


Definition

An H-space consists of a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
, together with an element of and a
continuous map In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
, such that and the maps and are both
homotopic In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deforma ...
to the identity map through maps sending to . This may be thought of as a pointed topological space together with a continuous multiplication for which the basepoint is an
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
up to basepoint-preserving homotopy. One says that a topological space is an H-space if there exists and such that the triple is an H-space as in the above definition. Alternatively, an H-space may be defined without requiring homotopies to fix the basepoint , or by requiring to be an exact identity, without any consideration of homotopy. In the case of a
CW complex A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This cla ...
, all three of these definitions are in fact equivalent.


Examples and properties

The standard definition of the
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
, together with the fact that it is a group, can be rephrased as saying that the
loop space In topology, a branch of mathematics, the loop space Ω''X'' of a pointed topological space ''X'' is the space of (based) loops in ''X'', i.e. continuous pointed maps from the pointed circle ''S''1 to ''X'', equipped with the compact-open topology ...
of a pointed topological space has the structure of an H-group, as equipped with the standard operations of concatenation and inversion. Furthermore a continuous basepoint preserving map of pointed topological space induces a H-homomorphism of the corresponding loop spaces; this reflects the group homomorphism on fundamental groups induced by a continuous map. It is straightforward to verify that, given a pointed
homotopy equivalence In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deforma ...
from a H-space to a pointed topological space, there is a natural H-space structure on the latter space. As such, the existence of an H-space structure on a given space is only dependent on pointed homotopy type. The multiplicative structure of an H-space adds structure to its
homology Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor * Sequence homology, biological homology between DNA, RNA, or protein sequences *Homologous chrom ...
and
cohomology group In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
s. For example, the
cohomology ring In mathematics, specifically algebraic topology, the cohomology ring of a topological space ''X'' is a ring formed from the cohomology groups of ''X'' together with the cup product serving as the ring multiplication. Here 'cohomology' is usually und ...
of a
path-connected In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that ...
H-space with finitely generated and free cohomology groups is a
Hopf algebra Hopf is a German surname. Notable people with the surname include: *Eberhard Hopf (1902–1983), Austrian mathematician *Hans Hopf (1916–1993), German tenor *Heinz Hopf (1894–1971), German mathematician *Heinz Hopf (actor) (1934–2001), Swedis ...
. Also, one can define the
Pontryagin product In mathematics, the Pontryagin product, introduced by , is a product on the Homology (mathematics), homology of a topological space induced by a product on the topological space. Special cases include the Pontryagin product on the homology of an abe ...
on the homology groups of an H-space.Hatcher p.287 The
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
of an H-space is abelian. To see this, let ''X'' be an H-space with identity ''e'' and let ''f'' and ''g'' be loops at ''e''. Define a map ''F'': ,1× ,1→ ''X'' by ''F''(''a'',''b'') = ''f''(''a'')''g''(''b''). Then ''F''(''a'',0) = ''F''(''a'',1) = ''f''(''a'')''e'' is homotopic to ''f'', and ''F''(0,''b'') = ''F''(1,''b'') = ''eg''(''b'') is homotopic to ''g''. It is clear how to define a homotopy from 'f''''g''] to 'g''''f'']. Adams' Hopf invariant, Hopf invariant one theorem, named after
Frank Adams John Frank Adams (5 November 1930 – 7 January 1989) was a British mathematician, one of the major contributors to homotopy theory. Life He was born in Woolwich, a suburb in south-east London, and attended Bedford School. He began researc ...
, states that ''S''0, ''S''1, ''S''3, ''S''7 are the only
spheres The Synchronized Position Hold Engage and Reorient Experimental Satellite (SPHERES) are a series of miniaturized satellites developed by MIT's Space Systems Laboratory for NASA and US Military, to be used as a low-risk, extensible test bed for the ...
that are H-spaces. Each of these spaces forms an H-space by viewing it as the subset of norm-one elements of the reals, complexes,
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
s, and
octonion In mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface or blackboard bold \mathbb O. Octonions have e ...
s, respectively, and using the multiplication operations from these algebras. In fact, ''S''0, ''S''1, and ''S''3 are groups (
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
s) with these multiplications. But ''S''7 is not a group in this way because octonion multiplication is not associative, nor can it be given any other continuous multiplication for which it is a group.


See also

*
Topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two str ...
*
Čech cohomology In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech. Motivation Let ''X'' be a topolo ...
*
Hopf algebra Hopf is a German surname. Notable people with the surname include: *Eberhard Hopf (1902–1983), Austrian mathematician *Hans Hopf (1916–1993), German tenor *Heinz Hopf (1894–1971), German mathematician *Heinz Hopf (actor) (1934–2001), Swedis ...
*
Topological monoid In topology, a branch of mathematics, a topological monoid is a monoid object in the category of topological spaces. In other words, it is a monoid with a topology with respect to which the monoid's binary operation is continuous. Every topologi ...
* H-object


Notes


References

*. Section 3.C * *. * . * {{DEFAULTSORT:H-Space Homotopy theory Algebraic topology Hopf algebras