HOME

TheInfoList



OR:

Worldwide growth of photovoltaics has been close to exponential between 1992 and 2018. During this period of time,
photovoltaics Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
(PV), also known as solar PV, evolved from a niche market of small-scale applications to a mainstream electricity source. When
solar PV system A photovoltaic system, also PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and co ...
s were first recognized as a promising
renewable energy Renewable energy is energy that is collected from renewable resources that are naturally replenished on a human timescale. It includes sources such as sunlight, wind, the movement of water, and geothermal heat. Although most renewable energy ...
technology, subsidy programs, such as feed-in tariffs, were implemented by a number of governments in order to provide economic incentives for investments. For several years, growth was mainly driven by Japan and pioneering European countries. As a consequence, cost of solar declined significantly due to
experience curve effects In industry, models of the learning or experience curve effect express the relationship between experience producing a good and the efficiency of that production, specifically, efficiency gains that follow investment in the effort. The effect h ...
like improvements in technology and
economies of scale In microeconomics, economies of scale are the cost advantages that enterprises obtain due to their scale of operation, and are typically measured by the amount of output produced per unit of time. A decrease in cost per unit of output enables ...
. Several national programs were instrumental in increasing PV deployment, such as the Energiewende in Germany, the Million Solar Roofs project in the United States, and China's 2011 five-year-plan for energy production. Since then, deployment of photovoltaics has gained momentum on a worldwide scale, increasingly competing with conventional energy sources. In the early 21st century a market for utility-scale plants emerged to complement rooftop and other distributed applications. By 2015, some 30 countries had reached grid parity. Since the 1950s, when the first solar cells were commercially manufactured, there has been a succession of countries leading the world as the largest producer of electricity from solar photovoltaics. First it was the United States, then Japan, followed by Germany, and currently China. By the end of 2018, global cumulative installed PV capacity reached about 512 gigawatts (GW), of which about 180 GW (35%) were utility-scale plants. Solar power supplied about 3% of global electricity demand in 2019. In 2018, solar PV contributed between 7% and 8% to the annual domestic consumption in
Italy Italy ( it, Italia ), officially the Italian Republic, ) or the Republic of Italy, is a country in Southern Europe. It is located in the middle of the Mediterranean Sea, and its territory largely coincides with the homonymous geographical ...
,
Greece Greece,, or , romanized: ', officially the Hellenic Republic, is a country in Southeast Europe. It is situated on the southern tip of the Balkans, and is located at the crossroads of Europe, Asia, and Africa. Greece shares land borders wi ...
, Germany, and Chile. The largest penetration of solar power in electricity production is found in
Honduras Honduras, officially the Republic of Honduras, is a country in Central America. The republic of Honduras is bordered to the west by Guatemala, to the southwest by El Salvador, to the southeast by Nicaragua, to the south by the Pacific Oce ...
(14%). Solar PV contribution to electricity in
Australia Australia, officially the Commonwealth of Australia, is a sovereign country comprising the mainland of the Australian continent, the island of Tasmania, and numerous smaller islands. With an area of , Australia is the largest country by ...
is edging towards 11%, while in the
United Kingdom The United Kingdom of Great Britain and Northern Ireland, commonly known as the United Kingdom (UK) or Britain, is a country in Europe, off the north-western coast of the continental mainland. It comprises England, Scotland, Wales and ...
and
Spain , image_flag = Bandera de España.svg , image_coat = Escudo de España (mazonado).svg , national_motto = '' Plus ultra'' (Latin)(English: "Further Beyond") , national_anthem = (English: "Royal March") , ...
it is close to 4%. China and
India India, officially the Republic of India (Hindi: ), is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area, the List of countries and dependencies by population, second-most populous ...
moved above the world average of 2.55%, while, in descending order, the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country Continental United States, primarily located in North America. It consists of 50 U.S. state, states, a Washington, D.C., ...
, South Korea,
France France (), officially the French Republic ( ), is a country primarily located in Western Europe. It also comprises of Overseas France, overseas regions and territories in the Americas and the Atlantic Ocean, Atlantic, Pacific Ocean, Pac ...
and
South Africa South Africa, officially the Republic of South Africa (RSA), is the southernmost country in Africa. It is bounded to the south by of coastline that stretch along the South Atlantic and Indian Oceans; to the north by the neighbouring coun ...
are below the world's average. Projections for photovoltaic growth are difficult and burdened with many uncertainties. Official agencies, such as the
International Energy Agency The International Energy Agency (IEA) is a Paris-based autonomous intergovernmental organisation, established in 1974, that provides policy recommendations, analysis and data on the entire global energy sector, with a recent focus on curbing car ...
(IEA) have consistently increased their estimates for decades, while still falling far short of projecting actual deployment in every forecast. Bloomberg NEF projects global solar installations to grow in 2019, adding another 125–141 GW resulting in a total capacity of 637–653 GW by the end of the year. By 2050, the IEA foresees solar PV to reach 4.7 terawatts (4,674 GW) in its high-renewable scenario, of which more than half will be deployed in China and India, making
solar power Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Photovoltaic cells convert light into an electric current using the photovolta ...
the world's largest source of electricity.


Solar PV nameplate capacity

Nameplate capacity denotes the peak power output of power stations in unit watt prefixed as convenient, to e.g.
kilowatt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James ...
(kW),
megawatt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James ...
(MW) and gigawatt (GW). Because power output for variable renewable sources is unpredictable, a source's average generation is generally significantly lower than the nameplate capacity. In order to have an estimate of the average power output, the capacity can be multiplied by a suitable capacity factor, which takes into account varying conditions - weather, nighttime, latitude, maintenance. Worldwide, the average solar PV capacity factor is 11%. In addition, depending on context, the stated peak power may be prior to a subsequent conversion to
alternating current Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
, e.g. for a single photovoltaic panel, or include this conversion and its loss for a grid connected
photovoltaic power station A photovoltaic power station, also known as a solar park, solar farm, or solar power plant, is a large-scale grid-connected photovoltaic power system (PV system) designed for the supply of merchant power. They are different from most building ...
.
Wind power Wind power or wind energy is mostly the use of wind turbines to generate electricity. Wind power is a popular, sustainable, renewable energy source that has a much smaller impact on the environment than burning fossil fuels. Historically ...
has different characteristics, e.g. a higher capacity factor and about four times the 2015 electricity production of solar power. Compared with wind power, photovoltaic power production correlates well with power consumption for air-conditioning in warm countries. a handful of utilities have started combining PV installations with battery banks, thus obtaining several hours of dispatchable generation to help mitigate problems associated with the duck curve after sunset.


Current status


Worldwide

In 2017, photovoltaic capacity increased by 95 GW, with a 29% growth year-on-year of new installations. Cumulative installed capacity exceeded 401 GW by the end of the year, sufficient to supply 2.1 percent of the world's total electricity consumption.


Regions

As of 2018, Asia was the fastest growing region, with almost 75% of global installations. China alone accounted for more than half of worldwide deployment in 2017. In terms of cumulative capacity, Asia was the most developed region with more than half of the global total of 401 GW in 2017. Europe continued to decline as a percentage of the global PV market. In 2017, Europe represented 28% of global capacity, the Americas 19% and Middle East 2%. However, with respect to per capita installation the European Union has more than twice the capacity compared to China and 25% more than the US. Solar PV covered 3.5% and 7% of European electricity demand and peak electricity demand, respectively in 2014.


Countries and territories

Worldwide growth of photovoltaics is extremely dynamic and varies strongly by country. The top installers of 2019 were China, the United States, and India. There are 37 countries around the world with a cumulative PV capacity of more than one gigawatt. The available solar PV capacity in Honduras is sufficient to supply 14.8% of the nation's electrical power while 8 countries can produce between 7% and 9% of their respective domestic electricity consumption.


History of leading countries

The
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country Continental United States, primarily located in North America. It consists of 50 U.S. state, states, a Washington, D.C., ...
was the leader of installed photovoltaics for many years, and its total capacity was 77
megawatt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James ...
s in 1996, more than any other country in the world at the time. From the late 1990s,
Japan Japan ( ja, 日本, or , and formally , ''Nihonkoku'') is an island country in East Asia. It is situated in the northwest Pacific Ocean, and is bordered on the west by the Sea of Japan, while extending from the Sea of Okhotsk in the n ...
was the world's leader of solar electricity production until 2005, when
Germany Germany,, officially the Federal Republic of Germany, is a country in Central Europe. It is the second most populous country in Europe after Russia, and the most populous member state of the European Union. Germany is situated betwee ...
took the lead and by 2016 had a capacity of over 40 gigawatts. In 2015,
China China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's List of countries and dependencies by population, most populous country, with a Population of China, population exceeding 1.4 billion, slig ...
surpassed Germany to become the world's largest producer of photovoltaic power, and in 2017 became the first country to surpass 100 GW of installed capacity.


United States (1954–1996)

The
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country Continental United States, primarily located in North America. It consists of 50 U.S. state, states, a Washington, D.C., ...
, where modern solar PV was invented, led installed capacity for many years. Based on preceding work by Swedish and German engineers, the American engineer Russell Ohl at
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mul ...
patented the first modern solar cell in 1946. It was also there at Bell Labs where the first practical c-silicon cell was developed in 1954. Hoffman Electronics, the leading manufacturer of silicon solar cells in the 1950s and 1960s, improved on the cell's efficiency, produced solar radios, and equipped Vanguard I, the first solar powered satellite launched into orbit in 1958. In 1977 US-President
Jimmy Carter James Earl Carter Jr. (born October 1, 1924) is an American politician who served as the 39th president of the United States from 1977 to 1981. A member of the Democratic Party (United States), Democratic Party, he previously served as th ...
installed
solar hot water panel Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential an ...
s on the White House (later removed by President Reagan) promoting
solar energy Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy (including solar water heating), and solar architecture. It is an essen ...
and the National Renewable Energy Laboratory, originally named ''Solar Energy Research Institute'' was established at Golden, Colorado. In the 1980s and early 1990s, most photovoltaic modules were used in
stand-alone power system A stand-alone power system (SAPS or SPS), also known as remote area power supply (RAPS), is an off-the-grid electricity system for locations that are not fitted with an electricity distribution system. Typical SAPS include one or more methods of e ...
s or powered consumer products such as
watches A watch is a portable timepiece intended to be carried or worn by a person. It is designed to keep a consistent movement despite the motions caused by the person's activities. A wristwatch is designed to be worn around the wrist, attached b ...
,
calculators An electronic calculator is typically a portable electronic device used to perform calculations, ranging from basic arithmetic to complex mathematics. The first solid-state electronic calculator was created in the early 1960s. Pocket-size ...
and toys, but from around 1995, industry efforts have focused increasingly on developing grid-connected rooftop PV systems and power stations. By 1996, solar PV capacity in the US amounted to 77 megawatts–more than any other country in the world at the time. Then, Japan moved ahead.


Japan (1997–2004)

Japan Japan ( ja, 日本, or , and formally , ''Nihonkoku'') is an island country in East Asia. It is situated in the northwest Pacific Ocean, and is bordered on the west by the Sea of Japan, while extending from the Sea of Okhotsk in the n ...
took the lead as the world's largest producer of PV electricity, after the city of Kobe was hit by the Great Hanshin earthquake in 1995. Kobe experienced severe power outages in the aftermath of the earthquake, and PV systems were then considered as a temporary supplier of power during such events, as the disruption of the electric grid paralyzed the entire infrastructure, including gas stations that depended on electricity to pump gasoline. Moreover, in December of that same year, an accident occurred at the multibillion-dollar experimental Monju Nuclear Power Plant. A sodium leak caused a major fire and forced a shutdown (classified as INES 1). There was massive public outrage when it was revealed that the semigovernmental agency in charge of Monju had tried to cover up the extent of the accident and resulting damage. Japan remained world leader in photovoltaics until 2004, when its capacity amounted to 1,132 megawatts. Then, focus on PV deployment shifted to Europe.


Germany (2005–2014)

In 2005,
Germany Germany,, officially the Federal Republic of Germany, is a country in Central Europe. It is the second most populous country in Europe after Russia, and the most populous member state of the European Union. Germany is situated betwee ...
took the lead from Japan. With the introduction of the Renewable Energy Act in 2000,
feed-in tariffs A feed-in tariff (FIT, FiT, standard offer contract,Couture, T., Cory, K., Kreycik, C., Williams, E., (2010)Policymaker's Guide to Feed-in Tariff Policy Design National Renewable Energy Laboratory, U.S. Dept. of Energy advanced renewable tariff, ...
were adopted as a policy mechanism. This policy established that renewables have priority on the grid, and that a fixed price must be paid for the produced electricity over a 20-year period, providing a guaranteed return on investment irrespective of actual market prices. As a consequence, a high level of investment security lead to a soaring number of new photovoltaic installations that peaked in 2011, while investment costs in renewable technologies were brought down considerably. In 2016 Germany's installed PV capacity was over the 40 GW mark.


China (2015–present)

China surpassed Germany's capacity by the end of 2015, becoming the world's largest producer of photovoltaic power.
China China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's List of countries and dependencies by population, most populous country, with a Population of China, population exceeding 1.4 billion, slig ...
's rapid PV growth continued in 2016 – with 34.2 GW of solar photovoltaics installed. The quickly lowering feed in tariff rates at the end of 2015 motivated many developers to secure tariff rates before mid-year 2016 – as they were anticipating further cuts (correctly so). During the course of the year, China announced its goal of installing 100 GW during the next Chinese Five Year Economic Plan (2016–2020). China expected to spend ¥1 trillion ($145B) on solar construction during that period. Much of China's PV capacity was built in the relatively less populated west of the country whereas the main centres of power consumption were in the east (such as Shanghai and Beijing). Due to lack of adequate power transmission lines to carry the power from the solar power plants, China had to curtail its PV generated power.


History of market development


Prices and costs (1977–present)

The average price per watt dropped drastically for solar cells in the decades leading up to 2017. While in 1977 prices for crystalline silicon cells were about $77 per watt, average spot prices in August 2018 were as low as $0.13 per watt or nearly 600 times less than forty years ago. Prices for thin-film solar cells and for c-Si
solar panel A solar cell panel, solar electric panel, photo-voltaic (PV) module, PV panel or solar panel is an assembly of photovoltaic solar cells mounted in a (usually rectangular) frame, and a neatly organised collection of PV panels is called a photo ...
s were around $.60 per watt. Module and cell prices declined even further after 2014 ''(see price quotes in table)''. This price trend was seen as evidence supporting Swanson's law (an observation similar to the famous
Moore's Law Moore's law is the observation that the number of transistors in a dense integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empi ...
) that states that the per-watt cost of solar cells and panels fall by 20 percent for every doubling of cumulative photovoltaic production. A 2015 study showed price/kWh dropping by 10% per year since 1980, and predicted that solar could contribute 20% of total electricity consumption by 2030. In its 2014 edition of the ''Technology Roadmap: Solar Photovoltaic Energy'' report, the International Energy Agency (IEA) published prices for residential, commercial and utility-scale PV systems for eight major markets as of 2013 ''(see table below)''. However, DOE's SunShot Initiative report states lower prices than the IEA report, although both reports were published at the same time and referred to the same period. After 2014 prices fell further. For 2014, the SunShot Initiative modeled U.S. system prices to be in the range of $1.80 to $3.29 per watt. Other sources identified similar price ranges of $1.70 to $3.50 for the different market segments in the U.S. In the highly penetrated German market, prices for residential and small commercial rooftop systems of up to 100 kW declined to $1.36 per watt (€1.24/W) by the end of 2014. In 2015, Deutsche Bank estimated costs for small residential rooftop systems in the U.S. around $2.90 per watt. Costs for utility-scale systems in China and India were estimated as low as $1.00 per watt. According to the International Renewable Energy Agency, a "sustained, dramatic decline" in utility-scale solar PV electricity cost driven by lower solar PV module and system costs continued in 2018, with global weighted average levelized cost of energy of solar PV falling to US$0.085 per kilowatt-hour, or 13% lower than projects commissioned the previous year, resulting in a decline from 2010 to 2018 of 77%.


Technologies (1990–present)

There were significant advances in conventional crystalline silicon (c-Si) technology in the years leading up to 2017. The falling cost of the
polysilicon Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry. Polysilicon is produce ...
since 2009, that followed after a period of severe shortage ''(see below)'' of silicon feedstock, pressure increased on manufacturers of commercial thin-film PV technologies, including amorphous thin-film silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS), led to the bankruptcy of several thin-film companies that had once been highly touted. The sector faced price competition from Chinese crystalline silicon cell and module manufacturers, and some companies together with their patents were sold below cost. In 2013 thin-film technologies accounted for about 9 percent of worldwide deployment, while 91 percent was held by crystalline silicon (
mono-Si Monocrystalline silicon, more often called single-crystal silicon, in short mono c-Si or mono-Si, is the base material for silicon-based discrete components and integrated circuits used in virtually all modern electronic equipment. Mono-Si also s ...
and
multi-Si Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry. Polysilicon is produce ...
). With 5 percent of the overall market, CdTe held more than half of the thin-film market, leaving 2 percent to each CIGS and amorphous silicon. * CIGS technology :Copper indium gallium selenide (CIGS) is the name of the semiconductor material on which the technology is based. One of the largest producers of CIGS photovoltaics in 2015 was the Japanese company Solar Frontier with a manufacturing capacity in the gigawatt-scale. Their CIS line technology included modules with conversion efficiencies of over 15%. The company profited from the booming Japanese market and attempted to expand its international business. However, several prominent manufacturers could not keep up with the advances in conventional crystalline silicon technology. The company
Solyndra Solyndra was a manufacturer of cylindrical panels of copper indium gallium selenide (CIGS) thin film solar cells based in Fremont, California. Heavily promoted as a leader in the sustainable energy sector for its unusual technology, Solyndra w ...
ceased all business activity and filed for Chapter 11 bankruptcy in 2011, and Nanosolar, also a CIGS manufacturer, closed its doors in 2013. Although both companies produced CIGS solar cells, it has been pointed out, that the failure was not due to the technology but rather because of the companies themselves, using a flawed architecture, such as, for example, Solyndra's cylindrical substrates. * CdTe technology :The U.S.-company First Solar, a leading manufacturer of CdTe, built several of the world's largest solar power stations, such as the
Desert Sunlight Solar Farm The Desert Sunlight Solar Farm is a 550 megawatt (MW AC) photovoltaic power station approximately six miles north of Desert Center, California, United States, in the Mojave Desert. It uses approximately 8.8 million cadmium telluride module ...
and
Topaz Solar Farm Topaz Solar Farm is a 550 megawatt ( MWAC) photovoltaic power station in San Luis Obispo County, California, United States. Construction on the project began in November 2011 and ended in November 2014. It is one of the world's largest sol ...
, both in the Californian desert with 550 MW capacity each, as well as the 102 MW AC Nyngan Solar Plant in
Australia Australia, officially the Commonwealth of Australia, is a sovereign country comprising the mainland of the Australian continent, the island of Tasmania, and numerous smaller islands. With an area of , Australia is the largest country by ...
(the largest PV power station in the Southern Hemisphere at the time) commissioned in mid-2015. The company was reported in 2013 to be successfully producing CdTe-panels with a steadily increasing efficiency and declining cost per watt. CdTe was the lowest
energy payback time Net Energy Gain (NEG) is a concept used in energy economics that refers to the difference between the energy expended to harvest an energy source and the amount of energy gained from that harvest. The net energy gain, which can be expressed in jo ...
of all mass-produced PV technologies, and could be as short as eight months in favorable locations. The company Abound Solar, also a manufacturer of cadmium telluride modules, went bankrupt in 2012. * a-Si technology :In 2012, ECD solar, once one of the world's leading manufacturer of amorphous silicon (a-Si) technology, filed for bankruptcy in Michigan, United States. Swiss OC Oerlikon divested its solar division that produced a-Si/μc-Si tandem cells to Tokyo Electron Limited. Other companies that left the amorphous silicon thin-film market include
DuPont DuPont de Nemours, Inc., commonly shortened to DuPont, is an American multinational chemical company first formed in 1802 by French-American chemist and industrialist Éleuthère Irénée du Pont de Nemours. The company played a major role in ...
, BP, Flexcell, Inventux, Pramac, Schuco, Sencera, EPV Solar, NovaSolar (formerly OptiSolar) and Suntech Power that stopped manufacturing a-Si modules in 2010 to focus on crystalline silicon solar panels. In 2013, Suntech filed for bankruptcy in China.


Silicon shortage (2005–2008)

In the early 2000s, prices for
polysilicon Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry. Polysilicon is produce ...
, the raw material for conventional solar cells, were as low as $30 per kilogram and silicon manufacturers had no incentive to expand production. However, there was a severe silicon shortage in 2005, when governmental programmes caused a 75% increase in the deployment of solar PV in Europe. In addition, the demand for silicon from semiconductor manufacturers was growing. Since the amount of silicon needed for semiconductors makes up a much smaller portion of production costs, semiconductor manufacturers were able to outbid solar companies for the available silicon in the market. Initially, the incumbent polysilicon producers were slow to respond to rising demand for solar applications, because of their painful experience with over-investment in the past. Silicon prices sharply rose to about $80 per kilogram, and reached as much as $400/kg for long-term contracts and spot prices. In 2007, the constraints on silicon became so severe that the solar industry was forced to idle about a quarter of its cell and module manufacturing capacity—an estimated 777 MW of the then available production capacity. The shortage also provided silicon specialists with both the cash and an incentive to develop new technologies and several new producers entered the market. Early responses from the solar industry focused on improvements in the recycling of silicon. When this potential was exhausted, companies have been taking a harder look at alternatives to the conventional
Siemens process Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substr ...
. As it takes about three years to build a new polysilicon plant, the shortage continued until 2008. Prices for conventional solar cells remained constant or even rose slightly during the period of silicon shortage from 2005 to 2008. This is notably seen as a "shoulder" that sticks out in the Swanson's PV-learning curve and it was feared that a prolonged shortage could delay solar power becoming competitive with conventional energy prices without subsidies. In the meantime the solar industry lowered the number of grams-per-watt by reducing wafer thickness and kerf loss, increasing yields in each manufacturing step, reducing module loss, and raising panel efficiency. Finally, the ramp up of polysilicon production alleviated worldwide markets from the scarcity of silicon in 2009 and subsequently lead to an overcapacity with sharply declining prices in the photovoltaic industry for the following years.


Solar overcapacity (2009–2013)

As the
polysilicon Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry. Polysilicon is produce ...
industry had started to build additional large production capacities during the shortage period, prices dropped as low as $15 per kilogram forcing some producers to suspend production or exit the sector. Prices for silicon stabilized around $20 per kilogram and the booming solar PV market helped to reduce the enormous global overcapacity from 2009 onwards. However, overcapacity in the PV industry continued to persist. In 2013, global record deployment of 38 GW (updated EPIA figure) was still much lower than China's annual production capacity of approximately 60 GW. Continued overcapacity was further reduced by significantly lowering solar module prices and, as a consequence, many manufacturers could no longer cover costs or remain competitive. As worldwide growth of PV deployment continued, the gap between overcapacity and global demand was expected in 2014 to close in the next few years. IEA-PVPS published in 2014 historical data for the worldwide utilization of solar PV module production capacity that showed a slow return to normalization in manufacture in the years leading up to 2014. The utilization rate is the ratio of production capacities versus actual production output for a given year. A low of 49% was reached in 2007 and reflected the peak of the silicon shortage that idled a significant share of the module production capacity. As of 2013, the utilization rate had recovered somewhat and increased to 63%.


Anti-dumping duties (2012–present)

After anti-dumping petition were filed and investigations carried out, the United States imposed tariffs of 31 percent to 250 percent on solar products imported from China in 2012. A year later, the EU also imposed definitive anti-dumping and anti-subsidy measures on imports of solar panels from China at an average of 47.7 percent for a two-year time span. Shortly thereafter, China, in turn, levied duties on U.S. polysilicon imports, the feedstock for the production of solar cells. In January 2014, the
Chinese Ministry of Commerce The Ministry of Commerce of the People's Republic of China (MOFCOM) is a cabinet-level executive agency of the State Council of China. It is responsible for formulating policy on foreign trade, export and import regulations, foreign direct ...
set its anti-dumping tariff on U.S. polysilicon producers, such as Hemlock Semiconductor Corporation to 57%, while other major polysilicon producing companies, such as German Wacker Chemie and Korean OCI were much less affected. All this has caused much controversy between proponents and opponents and was subject of debate.


History of deployment

Deployment figures on a global, regional and nationwide scale are well documented since the early 1990s. While worldwide photovoltaic capacity grew continuously, deployment figures by country were much more dynamic, as they depended strongly on national policies. A number of organizations release comprehensive reports on PV deployment on a yearly basis. They include annual and cumulative deployed PV capacity, typically given in watt-peak, a break-down by markets, as well as in-depth analysis and forecasts about future trends.


Worldwide annual deployment

Due to the exponential nature of PV deployment, most of the overall capacity has been installed in the years leading up to 2017 ''(see pie-chart)''. Since the 1990s, each year has been a record-breaking year in terms of newly installed PV capacity, except for 2012. Contrary to some earlier predictions, early 2017 forecasts were that 85 gigawatts would be installed in 2017. Near end-of-year figures however raised estimates to 95 GW for 2017-installations.Global Solar Market Demand Expected To Reach 100 Gigawatts In 2017, Says SolarPower Europe
CleanTechnica, 27 October 2017


Worldwide cumulative

Worldwide growth of solar PV capacity was an exponential curve between 1992 and 2017. Tables below show global cumulative nominal capacity by the end of each year in megawatts, and the year-to-year increase in percent. In 2014, global capacity was expected to grow by 33 percent from 139 to 185 GW. This corresponded to an exponential growth rate of 29 percent or about 2.4 years for current worldwide PV capacity to
double A double is a look-alike or doppelgänger; one person or being that resembles another. Double, The Double or Dubble may also refer to: Film and television * Double (filmmaking), someone who substitutes for the credited actor of a character * ...
. Exponential growth rate: P(t) = P0ert, where ''P0'' is 139 GW, growth-rate ''r'' 0.29 (results in
doubling time The doubling time is the time it takes for a population to double in size/value. It is applied to population growth, inflation, resource extraction, consumption of goods, compound interest, the volume of malignant tumours, and many other things ...
''t'' of 2.4 years). The following table contains data from multiple different sources. For 1992–1995: compiled figures of 16 main markets ''(see section All time PV installations by country),'' for 1996–1999: BP-Statistical Review of world energy (Historical Data Workbook) for 2000–2013: EPIA Global Outlook on Photovoltaics Report
:Legend: : Worldwide, cumulative nameplate capacity in megawatt-peak MWp, (re-)calculated in DC power output. : annual increase of cumulative worldwide PV nameplate capacity in percent. : figures of 16 main markets, including Australia, Canada, Japan, Korea, Mexico, European countries, and the United States.


Deployment by country


All time PV installations by country


IEA and other sources (1992-2015)


IRENA (2000-2020)


See also

* Growth of concentrated solar power (CSP) * List of renewable energy topics by country and territory * Solar power by country * Timeline of solar cells * Wind power by country


Notes


References


External links


IEA–International Energy Agency, PublicationsIEA–PVPS, IEA's Photovoltaic Power System ProgrammeFHI–ISE, Fraunhofer Institute for Solar Energy SystemsAPVI–Australian PV InstituteEPIA–European Photovoltaic Industry AssociationSEIA–Solar Energy Industries AssociationCanSIA–Canadian Solar Industries Association
* – Cost analysis of current PV production, PV learning curve –
UNSW The University of New South Wales (UNSW), also known as UNSW Sydney, is a public research university based in Sydney, New South Wales, Australia. It is one of the founding members of Group of Eight, a coalition of Australian research-intensive ...
, Pierre Verlinden, Trina Solar * – Michael Liebreich, "Cheapest Solar in World", about the record-low 5.84 US cents/kWh PPA in Dubai (2014) {{DEFAULTSORT:Growth of Photovoltaics Electrical-engineering-related lists Photovoltaics Technological change