HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point ...
, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space ...
in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1983;see it can be viewed as a generalisation, albeit non-optimal, of
Loewner's torus inequality In differential geometry, Loewner's torus inequality is an inequality due to Charles Loewner. It relates the systole and the area of an arbitrary Riemannian metric on the 2-torus. Statement In 1949 Charles Loewner proved that every metric on th ...
and Pu's inequality for the real projective plane. Technically, let ''M'' be an essential Riemannian manifold of dimension ''n''; denote by sys''π''1(''M'') the homotopy 1-systole of ''M'', that is, the least length of a non-contractible loop on ''M''. Then Gromov's inequality takes the form : \left(\operatorname_1(M)\right)^n \leq C_n \operatorname(M), where ''C''''n'' is a universal constant only depending on the dimension of ''M''.


Essential manifolds

A closed manifold is called ''essential'' if its
fundamental class In mathematics, the fundamental class is a homology class 'M''associated to a connected orientable compact manifold of dimension ''n'', which corresponds to the generator of the homology group H_n(M,\partial M;\mathbf)\cong\mathbf . The fundam ...
defines a nonzero element in the homology of its
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, o ...
, or more precisely in the homology of the corresponding
Eilenberg–MacLane space In mathematics, specifically algebraic topology, an Eilenberg–MacLane space Saunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name ...
. Here the fundamental class is taken in homology with integer coefficients if the manifold is orientable, and in coefficients modulo 2, otherwise. Examples of essential manifolds include aspherical manifolds,
real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properties Construction A ...
s, and lens spaces.


Proofs of Gromov's inequality

Gromov's original 1983 proof is about 35 pages long. It relies on a number of techniques and inequalities of global Riemannian geometry. The starting point of the proof is the imbedding of X into the Banach space of Borel functions on X, equipped with the sup norm. The imbedding is defined by mapping a point ''p'' of ''X'', to the real function on ''X'' given by the distance from the point ''p''. The proof utilizes the coarea inequality, the
isoperimetric inequality In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In n-dimensional space \R^n the inequality lower bounds the surface area or perimeter \operatorname(S) of a set S\subset\R^n ...
, the cone inequality, and the deformation theorem of
Herbert Federer Herbert Federer (July 23, 1920 – April 21, 2010) was an American mathematician. He is one of the creators of geometric measure theory, at the meeting point of differential geometry and mathematical analysis.Parks, H. (2012''Remembering Herbert F ...
.


Filling invariants and recent work

One of the key ideas of the proof is the introduction of filling invariants, namely the
filling radius In Riemannian geometry, the filling radius of a Riemannian manifold ''X'' is a metric invariant of ''X''. It was originally introduced in 1983 by Mikhail Gromov, who used it to prove his systolic inequality for essential manifolds, vastly gener ...
and the filling volume of ''X''. Namely, Gromov proved a sharp inequality relating the systole and the filling radius, :\mathrm_1 \leq 6\; \mathrm(X), valid for all essential manifolds ''X''; as well as an inequality :\mathrm(X) \leq C_n \mathrm_n^(X), valid for all closed manifolds ''X''. It was shown by that the filling invariants, unlike the systolic invariants, are independent of the topology of the manifold in a suitable sense. and developed approaches to the proof of Gromov's systolic inequality for essential manifolds.


Inequalities for surfaces and polyhedra

Stronger results are available for surfaces, where the asymptotics when the genus tends to infinity are by now well understood, see
systoles of surfaces In mathematics, systolic inequalities for curves on surfaces were first studied by Charles Loewner in 1949 (unpublished; see remark at end of P. M. Pu's paper in '52). Given a closed surface, its systole, denoted sys, is defined to be the least le ...
. A uniform inequality for arbitrary 2-complexes with non-free fundamental groups is available, whose proof relies on the Grushko decomposition theorem.


Notes


See also

*
Filling area conjecture In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points. Definition ...
*
Gromov's inequality (disambiguation) The following pages deal with inequalities due to Mikhail Gromov: * Bishop–Gromov inequality * Gromov's inequality for complex projective space * Gromov's systolic inequality for essential manifolds In the mathematical field of Riemannian g ...
*
Gromov's inequality for complex projective space In Riemannian geometry, Gromov's optimal stable 2- systolic inequality is the inequality : \mathrm_2^n \leq n! \;\mathrm_(\mathbb^n), valid for an arbitrary Riemannian metric on the complex projective space, where the optimal bound is attained b ...
*
Loewner's torus inequality In differential geometry, Loewner's torus inequality is an inequality due to Charles Loewner. It relates the systole and the area of an arbitrary Riemannian metric on the 2-torus. Statement In 1949 Charles Loewner proved that every metric on th ...
*
Pu's inequality In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it. Statement A student of Charl ...
*
Systolic geometry In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and o ...


References

*. * * * * {{Systolic geometry navbox Geometric inequalities Riemannian geometry Systolic geometry