HOME

TheInfoList



OR:

Grid energy storage (also called large-scale energy storage) is a collection of methods used for energy storage on a large scale within an electrical power grid. Electrical energy is stored during times when electricity is plentiful and inexpensive (especially from intermittent power sources such as renewable electricity from wind power,
tidal power Tidal power or tidal energy is harnessed by converting energy from tides into useful forms of power, mainly electricity using various methods. Although not yet widely used, tidal energy has the potential for future electricity generation. ...
and solar power) or when demand is low, and later returned to the grid when demand is high, and electricity prices tend to be higher. , the largest form of grid energy storage is dammed
hydroelectricity Hydroelectricity, or hydroelectric power, is electricity generated from hydropower (water power). Hydropower supplies one sixth of the world's electricity, almost 4500 TWh in 2020, which is more than all other renewable sources combined an ...
, with both conventional hydroelectric generation as well as pumped storage hydroelectricity. Developments in battery storage have enabled commercially viable projects to store energy during peak production and release during peak demand, and for use when production unexpectedly falls giving time for slower responding resources to be brought online. Two alternatives to grid storage are the use of peaking power plants to fill in supply gaps and demand response to shift load to other times.


Benefits

Any electrical power grid must match electricity production to consumption, both of which vary drastically over time. Any combination of energy storage and demand response has these advantages: *fuel-based power plants (i.e. coal, oil, gas, nuclear) can be more efficiently and easily operated at constant production levels *electricity generated by intermittent sources can be stored and used later, whereas it would otherwise have to be transmitted for sale elsewhere, or shut down *peak generating or transmission capacity can be reduced by the total potential of all storage plus deferrable loads (see demand side management), saving the expense of this capacity *more stable pricing – the cost of the storage or demand management is included in pricing so there is less variation in power rates charged to customers, or alternatively (if rates are kept stable by law) less loss to the utility from expensive on-peak wholesale power rates when peak demand must be met by imported wholesale power *emergency preparedness – vital needs can be met reliably even with no transmission or generation going on while non-essential needs are deferred Energy derived from solar, tidal and wind sources inherently varies on time scales ranging from minutes to weeks or longer – the amount of electricity produced varies with time of day, moon phase, season, and random factors such as the weather. Thus, renewables in the absence of storage present special challenges to electric utilities. While hooking up many separate wind sources can reduce the overall variability, solar is reliably not available at night, and tidal power shifts with the moon, so slack tides occur four times a day. How much this affects any given utility varies significantly. In a summer peak utility, more solar can generally be absorbed and matched to demand. In winter peak utilities, to a lesser degree, wind correlates to heating demand and can be used to meet that demand. Depending on these factors, beyond about 20–40% of total generation, grid-connected intermittent sources such as solar power and wind power tend to require investment in grid interconnections, grid energy storage or demand-side management. In an electrical grid without energy storage, generation that relies on energy stored within fuels (coal, biomass, natural gas, nuclear) must be scaled up and down to match the rise and fall of electrical production from intermittent sources (see load following power plant). While hydroelectric and natural gas plants can be quickly scaled up or down to follow the wind, coal and nuclear plants take considerable time to respond to load. Utilities with less natural gas or hydroelectric generation are thus more reliant on demand management, grid interconnections or costly pumped storage. The French consulting firm Yole Développement estimates the "stationary storage" market could be a $13.5 billion opportunity by 2023, compared with less than $1 billion in 2015.


Demand side management and grid storage

The demand side can also store electricity from the grid, for example charging a
battery electric vehicle A battery electric vehicle (BEV), pure electric vehicle, only-electric vehicle, fully electric vehicle or all-electric vehicle is a type of electric vehicle (EV) that exclusively uses chemical energy stored in rechargeable battery packs, wi ...
stores energy for a vehicle and storage heaters, district heating storage or ice storage provide thermal storage for buildings. At present this storage serves only to shift consumption to the off-peak time of day, no electricity is returned to the grid. The need for grid storage to provide peak power is reduced by demand side time of use pricing, one of the benefits of smart meters. At the household level, consumers may choose less expensive off-peak times to wash and dry clothes, use dishwashers, take showers and cook. As well, commercial and industrial users will take advantage of cost savings by deferring some processes to off-peak times. Regional impacts from the unpredictable operation of wind power has created a new need for interactive demand response, where the utility communicates with the demand. Historically this was only done in cooperation with large industrial consumers, but now may be expanded to entire grids. For instance, a few large-scale projects in Europe link variations in wind power to change industrial food freezer loads, causing small variations in temperature. If communicated on a grid-wide scale, small changes to heating/cooling temperatures would instantly change consumption across the grid. A report released in December 2013 by the
United States Department of Energy The United States Department of Energy (DOE) is an executive department of the U.S. federal government that oversees U.S. national energy policy and manages the research and development of nuclear power and nuclear weapons in the United States ...
further describes the potential benefits of energy storage and demand side technologies to the electric grid: "Modernizing the electric system will help the nation meet the challenge of handling projected energy needs—including addressing climate change by integrating more energy from renewable sources and enhancing efficiency from non-renewable energy processes. Advances to the electric grid must maintain a robust and resilient electricity delivery system, and energy storage can play a significant role in meeting these challenges by improving the operating capabilities of the grid, lowering cost and ensuring high reliability, as well as deferring and reducing infrastructure investments. Finally, energy storage can be instrumental for emergency preparedness because of its ability to provide backup power as well as grid stabilization services". The report was written by a core group of developers representing Office of Electricity Delivery and Energy Reliability, ARPA-E, Office of Science,
Office of Energy Efficiency and Renewable Energy The Office of Energy Efficiency and Renewable Energy (EERE) is an office within the United States Department of Energy. Formed from other energy agencies after the 1973 energy crisis, EERE is led by the Assistant Secretary of Energy Efficiency an ...
, Sandia National Laboratories, and Pacific Northwest National Laboratory; all of whom are engaged in the development of grid energy storage.


Energy storage for grid applications

Energy storage assets are a valuable asset for the electrical grid. They can provide benefits and services such as load management, power quality and uninterruptable power supply to increase the efficiency and supply security. This becomes more and more important in regard to the energy transition and the need for a more efficient and sustainable energy system. Numerous energy storage technologies ( pumped-storage hydroelectricity, electric battery, flow battery, flywheel energy storage, supercapacitor etc.) are suitable for grid-scale applications, however their characteristics differ. For example, a pumped-hydro station is well suited for bulk load management applications due to their large capacities and power capabilities. However, suitable locations are limited and their usefulness fades when dealing with localized power quality issues. On the other hand, flywheels and capacitors are most effective in maintaining power quality but lack storage capacities to be used in larger applications. These constraints are a natural limitation to the storage's applicability. Several studies have developed interest and investigated the suitability or selection of the optimal energy storage for certain applications. Literature surveys comprise the available information of the state-of-the-art and compare the storage's uses based on current existing projects. Other studies take a step further in evaluating energy storage with each other and rank their fitness based on
multiple-criteria decision analysis Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings ...
. Another paper proposed an evaluation scheme through the investigation and modelling of storage as equivalent circuits. An indexing approach has also been suggested in a few studies, but is still in the novel stages. In order to gain increased economic potential of grid connected energy storage systems, it is of interest to consider a portfolio with several services for one or more applications for an energy storage system. By doing so, several revenue streams can be achieved by a single storage and thereby also increasing the degree of utilization. To mention two examples, a combination of frequency response and reserve services is examined in, meanwhile load peak shaving together with power smoothing is considered in.


Forms


Air


Compressed air

One grid energy storage method is to use off-peak or renewably generated electricity to compress air, which is usually stored in an old mine or some other kind of geological feature. When electricity demand is high, the compressed air is heated with a small amount of
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
and then goes through turboexpanders to generate electricity. Compressed air storage is typically around 60–90% efficient.


Liquid air

Another electricity storage method is to compress and cool air, turning it into liquid air, which can be stored, and expanded when needed, turning a turbine, generating electricity, with a storage efficiency of up to 70%. A commercial liquid-air energy storage plant is under construction in the North of England, with commercial operation planned for 2022. The energy storage capacity of 250MWh of the plant will be nearly twice the capacity of the world's largest existing lithium-ion battery, the Hornsdale Power Reserve in South Australia. Since 2022 the Italian Company Energy Dome has run an almost similar pilot of 4 MWh on Corsica with not the use of (liquid) air but only . While discharging, the is stored in a dome.


Batteries

Battery storage was used in the early days of
direct current Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or ev ...
electric power. Where AC grid power was not readily available, isolated lighting plants run by
wind turbine A wind turbine is a device that converts the kinetic energy of wind into electrical energy. Hundreds of thousands of large turbines, in installations known as wind farms, now generate over 650 gigawatts of power, with 60 GW added each year. ...
s or internal combustion engines provided lighting and power to small motors. The battery system could be used to run the load without starting the engine or when the wind was calm. A bank of lead–acid batteries in glass jars both supplied power to illuminate lamps, as well as to start an engine to recharge the batteries. Battery storage technology is typically around 80% to more than 90% efficient for newer lithium-ion devices. Battery systems connected to large solid-state converters have been used to stabilize power distribution networks. Some grid batteries are co-located with renewable energy plants, either to smooth the power supplied by the intermittent wind or solar output, or to shift the power output into other hours of the day when the renewable plant cannot produce power directly (see Installation examples). These hybrid systems (generation and storage) can either alleviate the pressure on the grid when connecting renewable sources or be used to reach self-sufficiency and work "off-the-grid" (see
Stand-alone power system A stand-alone power system (SAPS or SPS), also known as remote area power supply (RAPS), is an off-the-grid electricity system for locations that are not fitted with an electricity distribution system. Typical SAPS include one or more methods of e ...
). Contrary to electric vehicle applications, batteries for stationary storage do not suffer from mass or volume constraints. However, due to the large amounts of energy and power implied, the cost per power or energy unit is crucial. The relevant metrics to assess the interest of a technology for grid-scale storage is the $/Wh (or $/W) rather than the Wh/kg (or W/kg). The electrochemical grid storage was made possible thanks to the development of the electric vehicle, that induced a fast decrease in the production costs of batteries below $300/kWh. By optimizing the production chain, major industrials aimed to reach $150/kWh by the end of 2020, but actually achieved $140/kWh. The rate of decline in battery prices has consistently outpaced most estimates, reaching $132/kWh in 2021. These batteries rely on a
lithium-ion A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. It is the predominant battery type used in portable consumer electronics and electric vehicles. It also ...
technology, which is suited for mobile applications (high cost, high density). Technologies optimized for the grid should focus on low cost per kWh. Lithium iron phosphate batteries are increasingly being used in both vehicles and grid storage because of their low cost, scale and acceptable energy density for many applications.


Grid-oriented battery technologies

Sodium-ion batteries are a cheap and sustainable alternative to lithium-ion, because sodium is far more abundant and cheaper than lithium, but it has a lower power density. However, they are still on the early stages of their development. Automotive-oriented technologies rely on solid electrodes, which feature a high energy density but require an expensive manufacturing process. Liquid electrodes represent a cheaper and less dense alternative as they do not need any processing.


= Molten-salt/liquid-metal batteries

= These batteries are composed of two molten metal alloys separated by an electrolyte. They are simple to manufacture but require a temperature of several hundred degree Celsius to keep the alloys in a liquid state. This technology includes ZEBRA, sodium-sulfur batteries and liquid metal. Sodium sulphur batteries are being used for grid storage in Japan and in the United States. The electrolyte is composed of solid beta alumina. The liquid metal battery, developed by the group of Pr.
Donald Sadoway Donald Robert Sadoway (born 7 March 1950) is professor emeritus of materials chemistry at the Massachusetts Institute of Technology. He is a noted expert on batteries and has done significant research on how to improve the performance and long ...
, uses molten alloys of magnesium and antimony separated by an electrically insulating molten salt. It is being brought to market by MIT spinoff company Ambri, which is currently contracted to install a first 250MWh system for TerraScale data centre company near Reno, Nevada.


= Flow batteries

= In rechargeable flow batteries, the liquid electrodes are composed of transition metals in water at room temperature. They can be used as a rapid-response storage medium. Vanadium redox batteries are a type of flow battery. Various flow batteries are installed at different sites including; Huxley Hill wind farm (Australia), Tomari Wind Hills at Hokkaidō (Japan), as well as in non-wind farm applications. A 12 MW·h flow battery was to be installed at the Sorne Hill wind farm (
Ireland Ireland ( ; ga, Éire ; Ulster-Scots: ) is an island in the North Atlantic Ocean, in north-western Europe. It is separated from Great Britain to its east by the North Channel, the Irish Sea, and St George's Channel. Ireland is the s ...
). These storage systems are designed to smooth out transient wind fluctuations. Hydrogen Bromide has been proposed for use in a utility-scale flow-type battery.


Examples

In Puerto Rico a system with a capacity of 20 megawatts for 15 minutes (5 megawatt hour) stabilizes the frequency of electric power produced on the island. A 27 megawatt 15-minute (6.75 megawatt hour) nickel-cadmium battery bank was installed at Fairbanks Alaska in 2003 to stabilize voltage at the end of a long transmission line. In 2014, the
Tehachapi Energy Storage Project The Tehachapi Energy Storage Project (TSP) is a 8 MW/32 MWh lithium-ion battery-based grid energy storage system at the Monolith Substation of Southern California Edison (SCE) in Tehachapi, California, sufficient to power between 1,600 and 2,400 ...
was commissioned by Southern California Edison. In 2016, a zinc-ion battery was proposed for use in grid storage applications. In 2017, the California Public Utilities Commission installed 396 refrigerator-sized stacks of Tesla batteries at the Mira Loma substation in
Ontario, California Ontario is a city in southwestern San Bernardino County in the U.S. state of California, east of downtown Los Angeles and west of downtown San Bernardino, the county seat. Located in the western part of the Inland Empire metropolitan area, i ...
. The stacks are deployed in two modules of 10 MW each (20 MW in total), each capable of running for 4 hours, thus adding up to 80 MWh of storage. The array is capable of powering 15,000 homes for over four hours. BYD proposes to use conventional consumer battery technologies such as lithium iron phosphate (LiFePO4) battery, connecting many batteries in parallel. The largest grid storage batteries in the United States include the 31.5 MW battery at Grand Ridge Power plant in Illinois and the 31.5 MW battery at Beech Ridge, West Virginia. Two batteries under construction in 2015 include the 400 MWh (100 MW for 4 hours) Southern California Edison project and the 52 MWh project on Kauai, Hawaii to entirely time shift a 13MW solar farm's output to the evening. Two batteries are in
Fairbanks, Alaska Fairbanks is a home rule city and the borough seat of the Fairbanks North Star Borough in the U.S. state of Alaska. Fairbanks is the largest city in the Interior region of Alaska and the second largest in the state. The 2020 Census put the p ...
(40 MW for 7 minutes using Ni-Cd cells), and in Notrees, Texas (36 MW for 40 minutes using lead–acid batteries). A 13 MWh battery made of used batteries from Daimler's
Smart electric drive The Smart EQ Fortwo, formerly Smart Fortwo electric drive, ''smart ed'' or Smart Fortwo EV, is a battery electric vehicle variant of the Smart Fortwo city car made by Smart. The Smart EQ Forfour is an electric variant of the larger Smart Forfo ...
cars is being constructed in Lünen, Germany, with an expected second life of 10 years. In 2015, a 221 MW battery storage was installed in the US, with total capacity expected to reach 1.7 GW in 2020. The UK had a 50 MW lithium-ion grid-battery installed in Hertfordshire in 2018. In February 2021, construction began on a 50 MW battery storage development in Burwell, Cambridgeshire and a 40 MW site in Barnsley, South Yorkshire. In November 2017 Tesla installed a 100 MW, 129 MWh battery system in South Australia. The
Australian Energy Market Operator The Australian Energy Market Operator (AEMO) performs an array of gas and electricity market, operational, development and planning functions. It manages the National Electricity Market (NEM), the Wholesale Electricity Market (WA) (WEM) and the ...
stated that this "is both rapid and precise, compared to the service typically provided by a conventional synchronous generation unit".


Electric vehicles

Companies are researching the possible use of electric vehicles to meet peak demand. A parked and plugged-in electric vehicle could sell the electricity from the battery during peak loads and charge either during night (at home) or during off-peak. Plug-in hybrid or electric cars could be used for their energy storage capabilities. Vehicle-to-grid technology can be employed, turning each vehicle with its 20 to 50 kWh battery pack into a distributed load-balancing device or emergency power source. This represents two to five days per vehicle of average household requirements of 10 kWh per day, assuming annual consumption of 3,650 kWh. This quantity of energy is equivalent to between of range in such vehicles consuming . These figures can be achieved even in home-made electric vehicle conversions. Some electric utilities plan to use old plug-in vehicle batteries (sometimes resulting in a giant battery) to store electricityWoody, Todd
"PG&E's Battery Power Plans Could Jump Start Electric Car Market."
(Blog). ''Green Wombat'', 2007-06-12. Retrieved on 2007-08-19
However, a large disadvantage of using vehicle to grid energy storage would be if each storage cycle stressed the battery with one complete charge-discharge cycle. However, one major study showed that used intelligently, vehicle-to-grid storage actually improved the batteries longevity. Conventional (cobalt-based) lithium-ion batteries break down with the number of cycles – newer li-ion batteries do not break down significantly with each cycle, and so have much longer lives. One approach is to reuse unreliable vehicle batteries in dedicated grid storage as they are expected to be good in this role for ten years. If such storage is done on a large scale it becomes much easier to guarantee replacement of a vehicle battery degraded in mobile use, as the old battery has value and immediate use.


Flywheel

Mechanical inertia is the basis of this storage method. When the electric power flows into the device, an
electric motor An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate f ...
accelerates a heavy rotating disc. The motor acts as a generator when the flow of power is reversed, slowing down the disc and producing electricity. Electricity is stored as the
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acce ...
of the disc.
Friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
must be kept to a minimum to prolong the storage time. This is often achieved by placing the flywheel in a vacuum and using magnetic bearings, tending to make the method expensive. Greater flywheel speeds allow greater storage capacity but require strong materials such as
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistan ...
or
composite material A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or ...
s to resist the
centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is paralle ...
s. The ranges of power and energy storage technology that make this method economic, however, tends to make flywheels unsuitable for general power system application; they are probably best suited to load-leveling applications on railway power systems and for improving power quality in renewable energy systems such as the 20MW system in Ireland. Applications that use flywheel storage are those that require very high bursts of power for very short durations such as tokamak and
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
experiments where a motor generator is spun up to operating speed and is partially slowed down during discharge. Flywheel storage is also currently used in the form of the Diesel rotary uninterruptible power supply to provide uninterruptible power supply systems (such as those in large datacenters) for ride-through power necessary during transfer – that is, the relatively brief amount of time between a loss of power to the mains and the warm-up of an alternate source, such as a diesel generator. This potential solution has been implemented by EDA in the
Azores ) , motto =( en, "Rather die free than subjected in peace") , anthem= ( en, "Anthem of the Azores") , image_map=Locator_map_of_Azores_in_EU.svg , map_alt=Location of the Azores within the European Union , map_caption=Location of the Azores wi ...
on the islands of Graciosa and Flores. This system uses an 18 megawatt-second flywheel to improve power quality and thus allow increased renewable energy usage. As the description suggests, these systems are again designed to smooth out transient fluctuations in supply, and could never be used to cope with an outage exceeding a couple of days. Powercorp in Australia have been developing applications using wind turbines, flywheels and low load diesel (LLD) technology to maximize the wind input to small grids. A system installed in Coral Bay, Western Australia, uses wind turbines coupled with a flywheel based control system and LLDs. The flywheel technology enables the wind turbines to supply up to 95 percent of Coral Bay's energy supply at times, with a total annual wind penetration of 45 percent.


Hydrogen

Hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
is being developed as an electrical energy storage medium. Hydrogen is produced, then compressed or liquefied, cryogenically stored at −252.882 °C, and then converted back to electrical energy or heat. Hydrogen can be used as a fuel for portable (vehicles) or stationary energy generation. Compared to pumped water storage and batteries, hydrogen has the advantage that it is a high energy density fuel. Hydrogen can be produced either by reforming natural gas with steam or by the electrolysis of water into hydrogen and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
(see hydrogen production). Reforming natural gas produces
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
as a by-product. High temperature electrolysis and high pressure electrolysis are two techniques by which the efficiency of hydrogen production may be able to be increased. Hydrogen is then converted back to electricity in an
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal co ...
, or a fuel cell. The AC-to-AC efficiency of hydrogen storage has been shown to be on the order of 20 to 45%, which imposes economic constraints. The price ratio between purchase and sale of electricity must be at least proportional to the efficiency in order for the system to be economic. Hydrogen fuel cells can respond quickly enough to correct rapid fluctuations in electricity demand or supply and regulate frequency. Whether hydrogen can use natural gas infrastructure depends on the network construction materials, standards in joints, and storage pressure. The equipment necessary for hydrogen energy storage includes an electrolysis plant, hydrogen compressors or liquifiers, and storage tanks. Biohydrogen is a process being investigated for producing hydrogen using biomass. Micro combined heat and power (microCHP) can use hydrogen as a fuel. Some nuclear power plants may be able to benefit from a symbiosis with hydrogen production. High temperature (950 to 1,000 °C) gas cooled nuclear generation IV reactors have the potential to electrolyze hydrogen from water by thermochemical means using nuclear heat as in the sulfur-iodine cycle. The first commercial reactors are expected in 2030. A community based pilot program using wind turbines and hydrogen generators was started in 2007 in the remote community of
Ramea, Newfoundland and Labrador Ramea is a small village in Newfoundland and Labrador located on Northwest Island, one of a group of five major islands located off the south coast of Newfoundland, Canada. The island is approximately 3.14 km long by 0.93 km wide (1.9 ...
. A similar project has been going on since 2004 in Utsira, a small Norwegian island municipality.


Underground hydrogen storage

Underground hydrogen storage Underground hydrogen storage is the practice of hydrogen storage in caverns, salt domes and depleted oil/gas fields. Large quantities of gaseous hydrogen have been stored in caverns for many years. The storage of large quantities of hydrogen un ...
is the practice of hydrogen storage in
cave A cave or cavern is a natural void in the ground, specifically a space large enough for a human to enter. Caves often form by the weathering of rock and often extend deep underground. The word ''cave'' can refer to smaller openings such as sea ...
rns,
salt dome A salt dome is a type of structural dome formed when salt (or other evaporite minerals) intrudes into overlying rocks in a process known as diapirism. Salt domes can have unique surface and subsurface structures, and they can be discovered usi ...
s and depleted oil and gas fields. Large quantities of gaseous hydrogen have been stored in caverns by Imperial Chemical Industries (ICI) for many years without any difficulties. The European project Hyunder indicated in 2013 that for the storage of wind and solar energy an additional 85 caverns are required as it cannot be covered by PHES and CAES systems.


Power to gas

Power to gas is a technology which converts electrical power to a gas
fuel A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy b ...
. There are 2 methods, the first is to use the electricity for
water splitting Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen: :2 H2O → 2 H2 + O2 Efficient and economical water splitting would be a technological breakthrough that could underpin a hydrogen economy, base ...
and inject the resulting hydrogen into the natural gas grid. The second less efficient method is used to convert
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
and water to
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
, (see
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
) using electrolysis and the
Sabatier reaction The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa ) in the presence of a nickel catalyst. It w ...
. The excess power or off peak power generated by wind generators or solar arrays is then used for load balancing in the energy grid. Using the existing natural gas system for hydrogen, fuel cell maker Hydrogenics and natural gas distributor Enbridge have teamed up to develop such a power to gas system in Canada. Pipeline storage of hydrogen where a natural gas network is used for the storage of hydrogen. Before switching to
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
, the German gas networks were operated using
towngas Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system. It is produced when coal is heated strongly in the absence of air. Town gas is a more general term referring to manufactured gaseous ...
, which for the most part consisted of hydrogen. The storage capacity of the German natural gas network is more than 200,000 GW·h which is enough for several months of energy requirement. By comparison, the capacity of all German pumped storage power plants amounts to only about 40 GW·h. The transport of energy through a gas network is done with much less loss (<0.1%) than in a power network (8%). The use of the existing natural gas pipelines for hydrogen was studied by NaturalHy


The power-to-ammonia concept

The power-to-
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous ...
concept offers a carbon-free energy storage route with a diversified application palette. At times when there is surplus low-carbon power, it can be used to create ammonia fuel. Ammonia may be produced by splitting water into hydrogen and oxygen with electricity, then high temperature and pressure are used to combine nitrogen from the air with the hydrogen, creating ammonia. As a liquid it is similar to propane, unlike hydrogen alone, which is difficult to store as a gas under pressure or to cryogenically liquefy and store at −253 °C. Just like natural gas, the stored ammonia can be used as a thermal fuel for transportation and electricity generation or used in a fuel cell. A standard 60,000 m³ tank of liquid ammonia contains about 211 GWh of energy, equivalent to the annual production of roughly 30 wind turbines. Ammonia can be burned cleanly: water and nitrogen are released, but no CO2 and little or no nitrogen oxides. Ammonia has multiple uses besides being an energy carrier, it is the basis for the production of many chemicals, the most common use is for fertilizer. Given this flexibility of usage, and given that the infrastructure for the safe transport, distribution and usage of ammonia is already in place, it makes ammonia a good candidate to be a large-scale, non-carbon, energy carrier of the future.


Hydroelectricity


Pumped water

In 2008, world pumped storage generating capacity was 104 GW, while other sources claim 127 GW, which comprises the vast majority of all types of grid electric storage – all other types combined are some hundreds of MW. In many places, pumped storage hydroelectricity is used to even out the daily generating load, by pumping water to a high storage reservoir during off-peak hours and weekends, using the excess base-load capacity from coal or nuclear sources. During peak hours, this water can be used for hydroelectric generation, often as a high value rapid-response reserve to cover transient peaks in demand. Pumped storage recovers about 70% to 85% of the energy consumed, and is currently the most cost effective form of mass power storage. The chief problem with pumped storage is that it usually requires two nearby reservoirs at considerably different heights, and often requires considerable capital expenditure. Pumped water systems have high dispatchability, meaning they can come on-line very quickly, typically within 15 seconds, which makes these systems very efficient at soaking up variability in electrical ''demand'' from consumers. There is over 90 GW of pumped storage in operation around the world, which is about 3% of ''instantaneous'' global generation capacity. Pumped water storage systems, such as the
Dinorwig Dinorwig sometimes spelled Dinorwic ( ; ; ), is a village located high above Llyn Padarn, near Llanberis, in Wales. The name is shared with the fort of Dinas Dinorwig, also within the community of Llanddeiniolen, on a foothill from Dinorwi ...
storage system in Britain, hold five or six hours of generating capacity, and are used to smooth out demand variations. Another example is the 1836 MW Tianhuangping Pumped-Storage Hydro Plant in China, which has a reservoir capacity of eight million cubic meters (2.1 billion U.S. gallons or the volume of water over
Niagara Falls Niagara Falls () is a group of three waterfalls at the southern end of Niagara Gorge, spanning the Canada–United States border, border between the Provinces and territories of Canada, province of Ontario in Canada and the U.S. state, state ...
in 25 minutes) with a vertical distance of 600 m (1970 feet). The reservoir can provide about 13 GW·h of stored gravitational potential energy (convertible to electricity at about 80% efficiency), or about 2% of China's daily electricity consumption. A new concept in pumped-storage is utilizing wind energy or solar power to pump water. Wind turbines or solar cells that direct drive water pumps for an energy storing wind or solar dam can make this a more efficient process but are limited. Such systems can only increase kinetic water volume during windy and daylight periods. A study published in 2013 showed rooftop solar, coupled to existing pumped-storage, could replace the reactors lost at Fukushima with an equivalent capacity factor.


Hydroelectric dams

Hydroelectric dams with large reservoirs can also be operated to provide peak generation at times of peak demand. Water is stored in the reservoir during periods of low demand and released through the plant when demand is higher. The net effect is the same as pumped storage, but without the pumping loss. Depending on the reservoir capacity the plant can provide daily, weekly, or seasonal load following. Many existing hydroelectric dams are fairly old (for example, the Hoover Dam was built in the 1930s), and their original design predated the newer intermittent power sources such as wind and solar by decades. A hydroelectric dam originally built to provide baseload power will have its generators sized according to the average flow of water into the reservoir. Uprating such a dam with additional generators increases its peak power output capacity, thereby increasing its capacity to operate as a virtual grid energy storage unit. The United States Bureau of Reclamation reports an investment cost of $69 per kilowatt capacity to uprate an existing dam, compared to more than $400 per kilowatt for oil-fired peaking generators. While an uprated hydroelectric dam does not directly store excess energy from other generating units, it behaves equivalently by accumulating its own fuel – incoming river water – during periods of high output from other generating units. Functioning as a virtual grid storage unit in this way, the uprated dam is one of the most efficient forms of energy storage, because it has no pumping losses to fill its reservoir, only increased losses to evaporation and leakage. A dam which impounds a large reservoir can store and release a correspondingly large amount of energy, by controlling river outflow and raising or lowering its reservoir level a few meters. Limitations do apply to dam operation, their releases are commonly subject to government regulated water rights to limit downstream effect on rivers. For example, there are grid situations where baseload thermal plants, nuclear or wind turbines are already producing excess power at night, dams are still required to release enough water to maintain adequate river levels, whether electricity is generated or not. Conversely there's a limit to peak capacity, which if excessive could cause a river to flood for a few hours each day.


Superconducting magnetic energy

Superconducting magnetic energy storage (SMES) systems store energy in the magnetic field created by the flow of
direct current Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or ev ...
in a superconducting coil which has been
cryogenically In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “ ...
cooled to a temperature below its superconducting critical temperature. A typical SMES system includes three parts: superconducting coil, power conditioning system and cryogenically cooled refrigerator. Once the superconducting coil is charged, the current will not decay and the magnetic energy can be stored indefinitely. The stored energy can be released back to the network by discharging the coil. The power conditioning system uses an inverter/ rectifier to transform
alternating current Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
(AC) power to direct current or convert DC back to AC power. The inverter/rectifier accounts for about 2–3% energy loss in each direction. SMES loses the least amount of
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describe ...
in the energy storage process compared to other methods of storing energy. SMES systems are highly efficient; the round-trip efficiency is greater than 95%. The high cost of superconductors is the primary limitation for commercial use of this energy storage method. Due to the energy requirements of refrigeration, and the limits in the total energy able to be stored, SMES is currently used for short duration energy storage. Therefore, SMES is most commonly devoted to improving power quality. If SMES were to be used for utilities it would be a diurnal storage device, charged from
base load The base load (also baseload) is the minimum level of demand on an electrical grid over a span of time, for example, one week. This demand can be met by unvarying power plants, dispatchable generation, or by a collection of smaller intermittent e ...
power at night and meeting peak loads during the day. Superconducting magnetic energy storage technical challenges are yet to be solved for it to become practical.


Thermal

In Denmark the direct storage of electricity is perceived as too expensive for very large scale usage, albeit significant usage is made of existing Norwegian Hydro. Instead, the use of existing hot water storage tanks connected to district heating schemes, heated by either electrode boilers or heat pumps, is seen as a preferable approach. The stored heat is then transmitted to dwellings using
district heating District heating (also known as heat networks or teleheating) is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating ...
pipes. Molten salt is used to store heat collected by a solar power tower so that it can be used to generate electricity in bad weather or at night. Building heating and cooling systems can be controlled to store thermal energy in either the building's mass or dedicated thermal storage tanks. This thermal storage can provide load-shifting or even more complex ancillary services by increasing power consumption (charging the storage) during off-peak times and lowering power consumption (discharging the storage) during higher-priced peak times. For example, off-peak electricity can be used to make ice from water, and the ice can be stored. The stored ice can be used to cool the air in a large building which would have normally used electric AC, thereby shifting the electric load to off-peak hours. On other systems stored ice is used to cool the intake air of a gas turbine generator, thus increasing the on-peak generation capacity and the on-peak efficiency. A pumped-heat electricity storage system uses a highly reversible heat engine/heat pump to pump heat between two storage vessels, heating one and cooling the other. The UK-based engineering company Isentropic that is developing the system claims a potential electricity-in to electricity-out round-trip efficiency of 72–80%. A Carnot battery is a type of energy storage systems that stores electricity in heat storage and converts the stored heat back to electricity via thermodynamics cycles. This concept has been investigated and developed by many research projects recently. One of the advantage of this type of system is that the cost at large-scale and long-duration of thermal storage could be much lower than other storage technologies.


Gravitational potential energy storage with solid masses

Alternatives include storing energy by moving large solid masses upward against gravity. This can be achieved inside old mine shafts or in specially constructed towers where heavy weights are winched up to store energy and allowed a controlled descent to release it. In rail energy storage, rail cars carrying large weights are moved up or down a section of inclined rail track, storing or releasing energy as a result;Massey, Nathanael and
ClimateWire E&E News is an American news organization that covers energy, environmental policy, climate change, markets and science. As of 2020, the organization has more than 65 reporters and editors across 10 cities. It was acquired by Politico in December ...

Energy Storage Hits the Rails Out West: In California and Nevada, projects store electricity in the form of heavy rail cars pulled up a hill
, '' ScientificAmerican.com'' website, 25 March 2014. Retrieved 28 March 2014.
In disused oil-well potential energy storage, weights are raised or lowered in a deep, decommissioned oil well.


Economics

The levelized cost of storing electricity depends highly on storage type and purpose; as subsecond-scale frequency regulation, minute/hour-scale peaker plants, or day/week-scale season storage. Using battery storage is said to have a levelized cost of $120 to $170 per MWh. This compares with open cycle gas turbines which, as of 2020, have a cost of around $151–198 per MWh. Generally speaking, energy storage is economical when the marginal cost of electricity varies more than the costs of storing and retrieving the energy plus the price of energy lost in the process. For instance, assume a pumped-storage reservoir can pump to its upper reservoir a volume of water capable of producing 1,200 MW·h after all losses are factored in (evaporation and seeping in the reservoir, efficiency losses, etc.). If the marginal cost of electricity during off-peak times is $15 per MW·h, and the reservoir operates at 75% efficiency (i.e., 1,600 MW·h are consumed and 1,200 MW·h of energy are retrieved), then the total cost of filling the reservoir is $24,000. If all of the stored energy is sold the following day during peak hours for an average $40 per MW·h, then the reservoir will see revenues of $48,000 for the day, for a gross profit of $24,000. However, the marginal cost of electricity varies because of the varying operational and fuel costs of different classes of generators. At one extreme, base load power plants such as
coal Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is formed when ...
-fired power plants and
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced b ...
plants are low marginal cost generators, as they have high capital and maintenance costs but low fuel costs. At the other extreme, peaking power plants such as gas turbine
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
plants burn expensive fuel but are cheaper to build, operate and maintain. To minimize the total operational cost of generating power, base load generators are dispatched most of the time, while peak power generators are dispatched only when necessary, generally when energy demand peaks. This is called "economic dispatch". Demand for
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describe ...
from the world's various grids varies over the course of the day and from season to season. For the most part, variation in electric demand is met by varying the amount of electrical energy supplied from primary sources. Increasingly, however, operators are storing lower-cost energy produced at night, then releasing it to the grid during the peak periods of the day when it is more valuable. In areas where hydroelectric dams exist, release can be delayed until demand is greater; this form of storage is common and can make use of existing reservoirs. This is not storing "surplus" energy produced elsewhere, but the net effect is the same – although without the efficiency losses. Renewable supplies with variable production, like
wind Wind is the natural movement of air or other gases relative to a planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few ...
and solar power, tend to increase the net variation in electric load, increasing the opportunity for grid energy storage. It may be more economical to find an alternative market for unused electricity, rather than try and store it.
High Voltage Direct Current A high-voltage direct current (HVDC) electric power transmission system (also called a power superhighway or an electrical superhighway) uses direct current (DC) for electric power transmission, in contrast with the more common alternating curre ...
allows for transmission of electricity, losing only 3% per 1000 km. The United States Department of Energy's International Energy Storage Database provides a free list of grid energy storage projects, many of which show funding sources and amounts.


Load leveling

The demand for electricity from consumers and industry is constantly changing, broadly within the following categories: *Seasonal (during dark winters more electric lighting and heating is required, while in other climates hot weather boosts the requirement for air conditioning) *Weekly (most industry closes at the weekend, lowering demand) *Daily (such as the morning peak as offices open and
air conditioners Air conditioning, often abbreviated as A/C or AC, is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as 'comfort cooling') and in some cases also strictly controlling ...
get switched on) *Hourly (one method for estimating television viewing figures in the United Kingdom is to measure the power spikes during advertisement breaks or after programmes when viewers go to switch a kettle on) *Transient (fluctuations due to individual's actions, differences in power transmission efficiency and other small factors that need to be accounted for) There are currently three main methods for dealing with changing demand: *Electrical devices generally having a working voltage range that they require, commonly 110–120 V or 220–240 V. Minor variations in load are automatically smoothed by slight variations in the voltage available across the system. *Power plants can be run below their normal output, with the facility to increase the amount they generate almost instantaneously. This is termed 'spinning reserve'. *Additional generation can be brought online. Typically, these would be hydroelectric or gas turbines, which can be started in a matter of minutes. The problem with standby gas turbines is higher costs; expensive generating equipment is unused much of the time. Spinning reserve also comes at a cost; plants running below maximum output are usually less efficient. Grid energy storage is used to shift generation from times of peak load to off-peak hours. Power plants are able to run at their peak efficiency during nights and weekends. Supply-demand leveling strategies may be intended to reduce the cost of supplying peak power or to compensate for the intermittent generation of wind and solar power.


Portability

This is the area of greatest success for current energy storage technologies. Single-use and rechargeable batteries are ubiquitous, and provide power for devices with demands as varied as digital watches and cars. Advances in battery technology have generally been slow, however, with much of the advance in battery life that consumers see being attributable to efficient power management rather than increased storage capacity. Portable
consumer electronics Consumer electronics or home electronics are electronic ( analog or digital) equipment intended for everyday use, typically in private homes. Consumer electronics include devices used for entertainment, communications and recreation. Usuall ...
have benefited greatly from size and power reductions associated with Moore's law. Unfortunately, Moore's law does not apply to hauling people and freight; the underlying energy requirements for transportation remain much higher than for information and entertainment applications. Battery capacity has become an issue as pressure grows for alternatives to
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal co ...
s in cars, trucks, buses, trains, ships, and aeroplanes. These uses require far more energy density (the amount of energy stored in a given volume or weight) than current battery technology can deliver. Liquid
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
fuel (such as
gasoline Gasoline (; ) or petrol (; ) (see ) is a transparent, petroleum-derived flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines (also known as petrol engines). It consists mostly of organic c ...
/
petrol Gasoline (; ) or petrol (; ) (see ) is a transparent, petroleum-derived flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines (also known as petrol engines). It consists mostly of organic c ...
and
diesel Diesel may refer to: * Diesel engine, an internal combustion engine where ignition is caused by compression * Diesel fuel, a liquid fuel used in diesel engines * Diesel locomotive, a railway locomotive in which the prime mover is a diesel engi ...
), as well as alcohols ( methanol,
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a ...
, and butanol) and
lipids Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids in ...
( straight vegetable oil,
biodiesel Biodiesel is a form of diesel fuel derived from plants or animals and consisting of long-chain fatty acid esters. It is typically made by chemically reacting lipids such as animal fat ( tallow), soybean oil, or some other vegetable oi ...
) have much higher energy densities. There are synthetic pathways for using electricity to reduce carbon dioxide and water to liquid hydrocarbon or alcohol fuels. These pathways begin with electrolysis of water to generate hydrogen, and then reducing carbon dioxide with excess hydrogen in variations of the reverse water gas shift reaction. Non-fossil sources of carbon dioxide include fermentation plants and
sewage treatment Sewage treatment (or domestic wastewater treatment, municipal wastewater treatment) is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable for discharge to the surrounding en ...
plants. Converting electrical energy to carbon-based liquid fuel has potential to provide portable energy storage usable by the large existing stock of motor vehicles and other engine-driven equipment, without the difficulties of dealing with hydrogen or another exotic
energy carrier An energy carrier is a substance (fuel) or sometimes a phenomenon (energy system) that contains energy that can be later converted to other forms such as mechanical work or heat or to operate chemical or physical processes. Such carriers includ ...
. These synthetic pathways may attract attention in connection with attempts to improve energy security in nations that rely on imported petroleum, but have or can develop large sources of renewable or nuclear electricity, as well as to deal with possible future declines in the amount of petroleum available to import. Because the transport sector uses the energy from petroleum very inefficiently, replacing petroleum with electricity for mobile energy will not require very large investments over many years.


Reliability

Virtually all devices that operate on electricity are adversely affected by the sudden removal of their power supply. Solutions such as UPS ( uninterruptible power supplies) or backup generators are available, but these are expensive. Efficient methods of power storage would allow for devices to have a built-in backup for power cuts, and also reduce the impact of a failure in a generating station. Examples of this are currently available using fuel cells and flywheels.


See also

*
Battery electric vehicles A battery electric vehicle (BEV), pure electric vehicle, only-electric vehicle, fully electric vehicle or all-electric vehicle is a type of electric vehicle (EV) that exclusively uses chemical energy stored in rechargeable battery packs, wi ...
*
Battery-to-grid A grid-tied electrical system, also called ''tied to grid'' or ''grid tie system'', is a semi-autonomous electrical generation or grid energy storage system which links to the mains to feed excess capacity back to the local mains electrical grid ...
* Cost of electricity by source * Distributed generation * Energy demand management * Energy storage * Energy storage as a service (ESaaS) * Fuel-cell vehicle * Grid-tied electrical system *
Hybrid electric vehicle A hybrid electric vehicle (HEV) is a type of hybrid vehicle that combines a conventional internal combustion engine (ICE) system with an Electric motor, electric propulsion system (hybrid vehicle drivetrain). The presence of the electric powertr ...
* Hydrogen economy *
List of energy storage projects This is a list of energy storage power plants worldwide, other than pumped hydro storage. Many individual energy storage plants augment electrical grids by capturing excess electrical energy during periods of low demand and storing it in o ...
*
Off-peak Peak demand on an electrical grid is simply the highest electrical power demand that has occurred over a specified time period (Gönen 2008). Peak demand is typically characterized as annual, daily or seasonal and has the unit of power. Peak d ...
* Power-to-X * Rechargeable battery * Solar vehicle * Solar-powered boats * U.S. Department of Energy International Energy Storage Database, a list of grid energy storage projects *
Vanadium redox battery The vanadium redox battery (VRB), also known as the vanadium flow battery (VFB) or vanadium redox flow battery (VRFB), is a type of rechargeable flow battery. It employs vanadium ions as charge carriers. The battery uses vanadium's ability to ...
, dispatchable grid energy storage * Vehicle-to-grid * Virtual power plant *
Wind farm A wind farm or wind park, also called a wind power station or wind power plant, is a group of wind turbines in the same location used to produce electricity. Wind farms vary in size from a small number of turbines to several hundred wind turb ...


References


Saving For a Windless day
by Sean Davies in The E&T Magazine Vol 5 Issue 9 from th
www.IET.org


Further reading

*


External links


UK Government report on the Benefits of long-duration electricity storage (Aug 2022)

A large grid-connected nickel-cadmium battery

Stationary Energy Storage…Key to the Renewable Grid

Electricity Storage FactBook
{{emerging technologies, energy=yes Power engineering