HOME

TheInfoList



OR:

The Green–Kubo relations ( Melville S. Green 1954, Ryogo Kubo 1957) give the exact mathematical expression for transport coefficients \gamma in terms of integrals of time correlation functions: :\gamma = \int_0^\infty \left\langle \dot(t) \dot(0) \right\rangle \;t.


Thermal and mechanical transport processes

Thermodynamic systems may be prevented from relaxing to equilibrium because of the application of a field (e.g. electric or magnetic field), or because the boundaries of the system are in relative motion (shear) or maintained at different temperatures, etc. This generates two classes of nonequilibrium system: mechanical nonequilibrium systems and thermal nonequilibrium systems. The standard example of an electrical transport process is Ohm's law, which states that, at least for sufficiently small applied voltages, the current ''I'' is linearly proportional to the applied voltage ''V'', : I = \sigma V.\, As the applied voltage increases one expects to see deviations from linear behavior. The coefficient of proportionality is the electrical conductance which is the reciprocal of the electrical resistance. The standard example of a mechanical transport process is Newton's law of
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
, which states that the shear stress S_ is linearly proportional to the strain rate. The strain rate \gamma is the rate of change streaming velocity in the x-direction, with respect to the y-coordinate, \gamma \mathrel\stackrel \partial u_x /\partial y . Newton's law of viscosity states : S_ = \eta \gamma.\, As the strain rate increases we expect to see deviations from linear behavior : S_ = \eta (\gamma )\gamma.\, Another well known thermal transport process is Fourier's law of heat conduction, stating that the heat flux between two bodies maintained at different temperatures is proportional to the temperature gradient (the temperature difference divided by the spatial separation).


Linear constitutive relation

Regardless of whether transport processes are stimulated thermally or mechanically, in the small field limit it is expected that a flux will be linearly proportional to an applied field. In the linear case the flux and the force are said to be conjugate to each other. The relation between a thermodynamic force ''F'' and its conjugate thermodynamic flux ''J'' is called a linear constitutive relation, :J = L(F_e = 0)F_e. \, ''L''(0) is called a linear transport coefficient. In the case of multiple forces and fluxes acting simultaneously, the fluxes and forces will be related by a linear transport coefficient matrix. Except in special cases, this matrix is
symmetric Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
as expressed in the
Onsager reciprocal relations In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists. "Reciprocal relations" occur betwe ...
. In the 1950s Green and Kubo proved an exact expression for linear transport coefficients which is valid for systems of arbitrary temperature T, and density. They proved that linear transport coefficients are exactly related to the time dependence of equilibrium fluctuations in the conjugate flux, : L(F_e = 0) = \beta V\;\int_0^\infty s \, \left\langle J(0)J(s) \right\rangle _, \, where \beta = \frac (with ''k'' the Boltzmann constant), and ''V'' is the system volume. The integral is over the equilibrium flux
autocovariance In probability theory and statistics, given a stochastic process, the autocovariance is a function that gives the covariance of the process with itself at pairs of time points. Autocovariance is closely related to the autocorrelation of the process ...
function. At zero time the autocovariance is positive since it is the mean square value of the flux at equilibrium. Note that at equilibrium the mean value of the flux is zero by definition. At long times the flux at time ''t'', ''J''(''t''), is uncorrelated with its value a long time earlier ''J''(0) and the autocorrelation function decays to zero. This remarkable relation is frequently used in molecular dynamics computer simulation to compute linear transport coefficients; see Evans and Morriss
"Statistical Mechanics of Nonequilibrium Liquids"
Academic Press 1990.


Nonlinear response and transient time correlation functions

In 1985 Denis Evans and Morriss derived two exact fluctuation expressions for nonlinear transport coefficients—se
Evans
and Morriss in Mol. Phys, 54, 629(1985). Evans later argued that these are consequences of the extremization of free energy i
Response theory as a free energy minimum
Evans and Morriss proved that in a thermostatted system that is at equilibrium at ''t'' = 0, the nonlinear transport coefficient can be calculated from the so-called transient time correlation function expression: : L(F_e ) = \beta V\;\int_0^\infty s \, \left\langle J(0)J(s) \right\rangle_, where the equilibrium ( F_e = 0 ) flux autocorrelation function is replaced by a thermostatted field dependent transient autocorrelation function. At time zero \left\langle J(0) \right\rangle_ = 0 but at later times since the field is applied \left\langle J(t) \right\rangle_ \ne 0 . Another exact fluctuation expression derived by Evans and Morriss is the so-called Kawasaki expression for the nonlinear response: : \left\langle J(t;F_e ) \right\rangle = \left\langle J(0)\exp \left -\beta V\int_0^t J(-s)F_e \, s \right\right\rangle _. \, The ensemble average of the right hand side of the Kawasaki expression is to be evaluated under the application of both the thermostat and the external field. At first sight the transient time correlation function (TTCF) and Kawasaki expression might appear to be of limited use—because of their innate complexity. However, the TTCF is quite useful in computer simulations for calculating transport coefficients. Both expressions can be used to derive new and useful fluctuatio
expressions
quantities like specific heats, in nonequilibrium steady states. Thus they can be used as a kind of partition function for nonequilibrium steady states.


Derivation from the fluctuation theorem and the central limit theorem

For a thermostatted steady state, time integrals of the dissipation function are related to the dissipative flux, J, by the equation : \bar \Omega _t = - \beta \overline J _t VF_e.\, We note in passing that the long time average of the dissipation function is a product of the thermodynamic force and the average conjugate thermodynamic flux. It is therefore equal to the spontaneous entropy production in the system. The spontaneous entropy production plays a key role in linear irreversible thermodynamics – see de Groot and Mazur "Non-equilibrium thermodynamics" Dover. The
fluctuation theorem The fluctuation theorem (FT), which originated from statistical mechanics, deals with the relative probability that the entropy of a system which is currently away from thermodynamic equilibrium (i.e., maximum entropy) will increase or decrease ov ...
(FT) is valid for arbitrary averaging times, t. Let's apply the FT in the long time limit while simultaneously reducing the field so that the product F_e^2 t is held constant, : \lim_\frac \ln \left( \frac \right) = -\lim_ AVF_e,\quad F_e^2 t = c. Because of the particular way we take the double limit, the negative of the mean value of the flux remains a fixed number of standard deviations away from the mean as the averaging time increases (narrowing the distribution) and the field decreases. This means that as the averaging time gets longer the distribution near the mean flux and its negative, is accurately described by the
central limit theorem In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themsel ...
. This means that the distribution is Gaussian near the mean and its negative so that : \lim_ \frac \ln \left( \frac \right) = \lim_ \frac. Combining these two relations yields (after some tedious algebra!) the exact Green–Kubo relation for the linear zero field transport coefficient, namely, : L(0) = \beta V\;\int_0^\infty t \, \left\langle J(0)J(t) \right\rangle_. Here are the details of the proof of Green–Kubo relations from the FT. A proof using only elementary quantum mechanics was given by Zwanzig.


Summary

This shows the fundamental importance of the
fluctuation theorem The fluctuation theorem (FT), which originated from statistical mechanics, deals with the relative probability that the entropy of a system which is currently away from thermodynamic equilibrium (i.e., maximum entropy) will increase or decrease ov ...
(FT) in nonequilibrium statistical mechanics. The FT gives a generalisation of the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
. It is then easy to prove the second law inequality and the Kawasaki identity. When combined with the
central limit theorem In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themsel ...
, the FT also implies the Green–Kubo relations for linear transport coefficients close to equilibrium. The FT is, however, more general than the Green–Kubo Relations because, unlike them, the FT applies to fluctuations far from equilibrium. In spite of this fact, no one has yet been able to derive the equations for nonlinear response theory from the FT. The FT does ''not'' imply or require that the distribution of time-averaged dissipation is Gaussian. There are many examples known when the distribution is non-Gaussian and yet the FT still correctly describes the probability ratios.


See also

*
Density matrix In quantum mechanics, a density matrix (or density operator) is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using ...
*
Fluctuation theorem The fluctuation theorem (FT), which originated from statistical mechanics, deals with the relative probability that the entropy of a system which is currently away from thermodynamic equilibrium (i.e., maximum entropy) will increase or decrease ov ...
*
Fluctuation–dissipation theorem The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the th ...
*
Green's function (many-body theory) In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from ...
*
Lindblad equation In quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL equation, named after Vittorio Gorini, Andrzej Kossakowski, George Sudarshan and Göran Lindblad), master equation in Lindblad form, quantum Liouvillian, or Li ...
*
Linear response function A linear response function describes the input-output relationship of a signal transducer such as a radio turning electromagnetic waves into music or a neuron turning synaptic input into a response. Because of its many applications in information t ...


References

* * {{DEFAULTSORT:Green-Kubo Relations Theoretical physics Thermodynamic equations Statistical mechanics Non-equilibrium thermodynamics