HOME

TheInfoList



OR:

Gravity Probe B (GP-B) was a
satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioiso ...
-based experiment to test two unverified predictions of general relativity: the
geodetic effect The geodetic effect (also known as geodetic precession, de Sitter precession or de Sitter effect) represents the effect of the curvature of spacetime, predicted by general relativity, on a vector carried along with an orbiting body. For example, ...
and
frame-dragging Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses ca ...
. This was to be accomplished by measuring, very precisely, tiny changes in the direction of spin of four gyroscopes contained in an Earth-orbiting satellite at of altitude, crossing directly over the poles. The satellite was launched on 20 April 2004 on a
Delta II Delta II was an expendable launch system, originally designed and built by McDonnell Douglas. Delta II was part of the Delta rocket family and entered service in 1989. Delta II vehicles included the Delta 6000, and the two later Delta 7000 va ...
rocket. The spaceflight phase lasted until ; Its aim was to measure
spacetime curvature General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. G ...
near Earth, and thereby the
stress–energy tensor The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the str ...
(which is related to the distribution and the motion of matter in space) in and near Earth. This provided a test of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
,
gravitomagnetism Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain ...
and related models. The principal investigator was
Francis Everitt C. W. Francis Everitt (born 8 March 1934) is a US-based English physicist working on experimental testing of general relativity. Everitt was educated at Imperial College London and the University of Pennsylvania in low-temperature physics. He ...
. Initial results confirmed the expected
geodetic effect The geodetic effect (also known as geodetic precession, de Sitter precession or de Sitter effect) represents the effect of the curvature of spacetime, predicted by general relativity, on a vector carried along with an orbiting body. For example, ...
to an accuracy of about 1%. The expected frame-dragging effect was similar in magnitude to the current noise level (the noise being dominated by initially unmodeled effects due to nonuniform coatings on the gyroscopes). Work continued to model and account for these sources of error, thus permitting extraction of the frame-dragging signal. By , the frame-dragging effect had been confirmed to within 15% of the expected result, and the
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
report indicated that the geodetic effect was confirmed to be better than 0.5%. In an article published in the journal ''
Physical Review Letters ''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. As also confirmed by various measurement standards, which include the ''Journa ...
'' in , the authors reported analysis of the data from all four gyroscopes results in a geodetic drift rate of and a frame-dragging drift rate of , in good agreement with the general relativity predictions of and , respectively.


Overview

Gravity Probe B was a relativity
gyroscope A gyroscope (from Ancient Greek γῦρος ''gŷros'', "round" and σκοπέω ''skopéō'', "to look") is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rot ...
experiment funded by NASA. Efforts were led by the
Stanford University Stanford University, officially Leland Stanford Junior University, is a private research university in Stanford, California. The campus occupies , among the largest in the United States, and enrolls over 17,000 students. Stanford is conside ...
physics department with
Lockheed Martin The Lockheed Martin Corporation is an American aerospace, arms, defense, information security, and technology corporation with worldwide interests. It was formed by the merger of Lockheed Corporation with Martin Marietta in March 1995. It ...
as the primary subcontractor. Mission scientists viewed it as the second relativity experiment in space, following the successful launch of
Gravity Probe A Gravity Probe A (GP-A) was a space-based experiment to test the equivalence principle, a feature of Einstein's theory of relativity. It was performed jointly by the Smithsonian Astrophysical Observatory and the National Aeronautics and Space ...
(GP-A) in . The mission plans were to test two unverified predictions of general relativity: the geodetic effect and
frame-dragging Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses ca ...
. This was to be accomplished by measuring, very precisely, tiny changes in the direction of spin of four gyroscopes contained in an Earth satellite orbiting at altitude, crossing directly over the poles. The gyroscopes were intended to be so free from disturbance that they would provide a near-perfect
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
reference system. This would allow them to reveal how space and time are "warped" by the presence of the Earth, and by how much the Earth's rotation "drags" space-time around with it. The geodetic effect is an effect caused by space-time being "curved" by the mass of the Earth. A gyroscope's axis when
parallel transport In geometry, parallel transport (or parallel translation) is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on the tangent b ...
ed around the Earth in one complete revolution does not end up pointing in exactly the same direction as before. The angle "missing" may be thought of as the amount the gyroscope "leans over" into the slope of the space-time curvature. A more precise explanation for the space curvature part of the geodetic precession is obtained by using a nearly flat cone to model the space curvature of the Earth's gravitational field. Such a cone is made by cutting out a thin "pie-slice" from a circle and gluing the cut edges together. The spatial geodetic precession is a measure of the missing "pie-slice" angle. Gravity Probe B was expected to measure this effect to an accuracy of one part in 10,000, the most stringent check on general relativistic predictions to date. The much smaller frame-dragging effect is an example of
gravitomagnetism Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain ...
. It is an analog of
magnetism Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
in
classical electrodynamics Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model; It is, therefore, a classical fi ...
, but caused by rotating masses rather than rotating electric charges. Previously, only two analyses of the
laser-ranging A laser rangefinder, also known as a laser telemeter, is a rangefinder that uses a laser beam to determine the distance to an object. The most common form of laser rangefinder operates on the time of flight principle by sending a laser pulse in ...
data obtained by the two
LAGEOS LAGEOS, Laser Geodynamics Satellite or Laser Geometric Environmental Observation Survey, are a series of two scientific research satellites designed to provide an orbiting laser ranging benchmark for geodynamical studies of the Earth. Each satel ...
satellites, published in and , claimed to have found the frame-dragging effect with an accuracy of about 20% and 10% respectively, whereas Gravity Probe B aimed to measure the frame dragging effect to a precision of 1%. However, Lorenzo Iorio claimed that the level of total uncertainty of the tests conducted with the two LAGEOS satellites has likely been greatly underestimated. A recent analysis of
Mars Global Surveyor ''Mars Global Surveyor'' (MGS) was an American robotic space probe developed by NASA's Jet Propulsion Laboratory and launched November 1996. MGS was a global mapping mission that examined the entire planet, from the ionosphere down through t ...
data has claimed to have confirmed the frame dragging effect to a precision of 0.5%, although the accuracy of this claim is disputed. Also the Lense–Thirring effect of the Sun has been recently investigated in view of a possible detection with the inner planets in the near future. The launch was planned for at
Vandenberg Air Force Base Vandenberg may refer to: * Vandenberg (surname), including a list of people with the name * USNS ''General Hoyt S. Vandenberg'' (T-AGM-10), transport ship in the United States Navy, sank as an artificial reef in Key West, Florida * Vandenberg Sp ...
but was scrubbed within 5 minutes of the scheduled launch window due to changing winds in the upper atmosphere. An unusual feature of the mission is that it only had a one-second launch window due to the precise orbit required by the experiment. On PDT ( UTC) the spacecraft was launched successfully. The satellite was placed in orbit at AM ( UTC) after a cruise period over the south pole and a short second burn. The mission lasted 16 months. Some preliminary results were presented at a special session during the
American Physical Society The American Physical Society (APS) is a not-for-profit membership organization of professionals in physics and related disciplines, comprising nearly fifty divisions, sections, and other units. Its mission is the advancement and diffusion of k ...
meeting in . NASA initially requested a proposal for extending the GP-B data analysis phase through . The data analysis phase was further extended to using funding from
Richard Fairbank Richard Dana Fairbank (born September 18, 1950) is an American billionaire businessman who founded Capital One with Nigel Morris in 1988. He previously served on the board of directors of MasterCard International from 2004 through 2006. He is ...
, Stanford and NASA, and beyond that point using non-NASA funding only. Final science results were reported in .


Experimental setup

The ''Gravity Probe B'' experiment comprised four London moment gyroscopes and a reference
telescope A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to obse ...
sighted on
IM Pegasi IM Pegasi is a variable binary star system approximately 329 light-years away in the constellation of Pegasus. With an apparent magnitude of 5.7, it is visible to the naked eye. Increased public awareness of it is due to its use as th ...
, a
binary star A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in ...
in the constellation
Pegasus Pegasus ( grc-gre, Πήγασος, Pḗgasos; la, Pegasus, Pegasos) is one of the best known creatures in Greek mythology. He is a winged divine stallion usually depicted as pure white in color. He was sired by Poseidon, in his role as hor ...
. In
polar orbit A polar orbit is one in which a satellite passes above or nearly above both poles of the body being orbited (usually a planet such as the Earth, but possibly another body such as the Moon or Sun) on each revolution. It has an inclination of about ...
, with the gyro spin directions also pointing toward IM Pegasi, the frame-dragging and geodetic effects came out at right angles, each gyroscope measuring both. The gyroscopes were housed in a dewar of
superfluid helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. Its ...
, maintaining a temperature of under . Near-
absolute zero Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibra ...
temperatures were required to minimize molecular interference, and enable the
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
and
niobium Niobium is a chemical element with chemical symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and ductile transition metal. Pure niobium has a Mohs hardness rating similar to pure titanium, and it has s ...
components of the gyroscope mechanisms to become superconductive. At the time of their manufacture, the gyroscopes were the most nearly spherical objects ever made (two gyroscopes still hold that record, but third place has been taken by the silicon spheres made by the Avogadro project). Approximately the size of
ping pong Table tennis, also known as ping-pong and whiff-whaff, is a sport in which two or four players hit a lightweight ball, also known as the ping-pong ball, back and forth across a table using small solid rackets. It takes place on a hard table div ...
balls, they were perfectly round to within forty atoms (less than ). If one of these spheres were scaled to the size of the Earth, the tallest mountains and deepest ocean trench would measure only high. The spheres were made of
fused quartz Fused quartz, fused silica or quartz glass is a glass consisting of almost pure silica (silicon dioxide, SiO2) in amorphous (non-crystalline) form. This differs from all other commercial glasses in which other ingredients are added which change ...
and coated with an extremely thin layer of
niobium Niobium is a chemical element with chemical symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and ductile transition metal. Pure niobium has a Mohs hardness rating similar to pure titanium, and it has s ...
. A primary concern was minimizing any influence on their spin, so the gyroscopes could never touch their containing compartment. They were held suspended with electric fields, spun up using a flow of helium gas, and their spin axes were sensed by monitoring the magnetic field of the superconductive niobium layer with
SQUID True squid are molluscs with an elongated soft body, large eyes, eight arms, and two tentacles in the superorder Decapodiformes, though many other molluscs within the broader Neocoleoidea are also called squid despite not strictly fittin ...
s. (A spinning superconductor generates a magnetic field precisely aligned with the rotation axis; see
London moment The London moment (after Fritz London) is a quantum-mechanical phenomenon whereby a spinning superconductor generates a magnetic field whose axis lines up exactly with the spin axis. The term may also refer to the magnetic moment of any rotat ...
.) IM Pegasi was chosen as the guide star for multiple reasons. First, it needed to be bright enough to be usable for sightings. Then it was close to the ideal positions near the
celestial equator The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. This plane of reference bases the equatorial coordinate system. In other words, the celestial equator is an abstract proj ...
. Also important was its well-understood motion in the sky, which was helped by the fact that this star emits relatively strong radio signals. In preparation for the setup of this mission, astronomers analyzed the radio-based position measurements with respect to far distant quasars taken over several years to understand its motion as precisely as needed.


History

The conceptual design for this mission was first proposed by an
MIT The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of the m ...
professor, George Pugh, who was working with the
U.S. Department of Defense The United States Department of Defense (DoD, USDOD or DOD) is an executive branch department of the federal government charged with coordinating and supervising all agencies and functions of the government directly related to national secur ...
in and later discussed by Leonard Schiff (
Stanford Stanford University, officially Leland Stanford Junior University, is a Private university, private research university in Stanford, California. The campus occupies , among the largest in the United States, and enrolls over 17,000 students. S ...
) in at Pugh's suggestion, based partly on a theoretical paper about detecting frame dragging that Schiff had written in . It was proposed to NASA in , and they supported the project with funds in . This grant ended in after a long phase of
engineering Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more speciali ...
research into the basic requirements and tools for the satellite. In NASA changed plans for the
Space Shuttle The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program n ...
, which forced the mission team to switch from a shuttle-based launch design to one that was based on the Delta 2, and in tests planned of a prototype on a shuttle flight were cancelled as well. Gravity Probe B marks the first time that Stanford University has been in control of the development and operations of a space satellite funded by NASA. The total cost of the project was about $750 million.


Mission timeline

This is a list of major events for the GP-B experiment. ; : Launch of GP-B from Vandenberg AFB and successful insertion into polar orbit. ; : GP-B entered its science phase. On mission day 129 all systems were configured to be ready for data collection, with the only exception being gyro 4, which needed further spin axis alignment. ; : The science phase of the mission ended and the spacecraft instruments transitioned to the final calibration mode. ; : The calibration phase ended with liquid helium still in the dewar. The spacecraft was returned to science mode pending the depletion of liquid helium. ; : Phase I of data analysis complete ; : Analysis team realised that more error analysis was necessary (particularly around the polhode motion of the gyros) than could be done in the time to and applied to NASA for an extension of funding to the end of . ; : Completion of Phase III of data analysis ; : Announcement of best results obtained to date. Francis Everitt gave a plenary talk at the meeting of the
American Physical Society The American Physical Society (APS) is a not-for-profit membership organization of professionals in physics and related disciplines, comprising nearly fifty divisions, sections, and other units. Its mission is the advancement and diffusion of k ...
announcing initial results: "The data from the GP-B gyroscopes clearly confirm Einstein's predicted geodetic effect to a precision of better than 1 percent. However, the frame-dragging effect is 170 times smaller than the geodetic effect, and Stanford scientists are still extracting its signature from the spacecraft data." ; : GP-B spacecraft decommissioned, left in its polar orbit. ; : GP-B Final experimental results were announced. In a public press and media event at NASA Headquarters, GP-B Principal Investigator, Francis Everitt presented the final results of Gravity Probe B. ; : Publication of GP-B Special Volume (Volume #32, Issue #22) in the peer-reviewed journal, ''
Classical and Quantum Gravity ''Classical and Quantum Gravity'' is a peer-reviewed journal that covers all aspects of gravitational physics and the theory of spacetime. Its scope includes: *Classical general relativity *Applications of relativity *Experimental gravitati ...
''. On , it was announced that a number of unexpected signals had been received and that these would need to be separated out before final results could be released. In it was announced that the spin axes of the gyroscopes were affected by torque, in a manner that varied over time, requiring further analysis to allow the results to be corrected for this source of error. Consequently, the date for the final release of data was pushed back several times. In the data for the frame-dragging results presented at the meeting of the American Physical Society, the random errors were much larger than the theoretical expected value and scattered on both the positive and negative sides of a null result, therefore causing skepticism as to whether any useful data could be extracted in the future to test this effect. In , a detailed update was released explaining the cause of the problem, and the solution that was being worked on. Although electrostatic patches caused by non-uniform coating of the spheres were anticipated, and were thought to have been controlled for before the experiment, it was subsequently found that the final layer of the coating on the spheres defined two-halves of slightly different contact potential, which gave the sphere an electrostatic axis. This created a classical dipole torque on each rotor, of a magnitude similar to the expected frame dragging effect. In addition, it dissipated energy from the polhode motion by inducing currents in the housing electrodes, causing the motion to change with time. This meant that a simple time-average polhode model was insufficient, and a detailed orbit by orbit model was needed to remove the effect. As it was anticipated that "anything could go wrong", the final part of the flight mission was calibration, where amongst other activities, data was gathered with the spacecraft axis deliberately misaligned for , to exacerbate any potential problems. This data proved invaluable for identifying the effects. With the electrostatic torque modeled as a function of axis misalignment, and the polhode motion modeled at a sufficiently fine level, it was hoped to isolate the relativity torques to the originally expected resolution. Stanford agreed to release the raw data to the public at an unspecified date in the future. It is likely that this data will be examined by independent scientists and independently reported to the public well after the final release by the project scientists. Because future interpretations of the data by scientists outside GP-B may differ from the official results, it may take several more years for all of the data received by GP-B to be completely understood.


NASA review

A review by a panel of 15 experts commissioned by NASA recommended against extending the data analysis phase beyond . They warned that the required reduction in noise level (due to classical torques and breaks in data collection due to solar flares) "is so large that any effect ultimately detected by this experiment will have to overcome considerable (and in our opinion, well justified) skepticism in the scientific community".


Data analysis after NASA

NASA funding and sponsorship of the program ended on , but GP-B secured alternative funding from
King Abdulaziz City for Science and Technology King Abdulaziz City for Science and Technology (KACST; ar, مدينة الملك عبدالعزيز للعلوم والتقنية) in Riyadh, Saudi Arabia is an organization established in 1977 as the Saudi Arabian National Center for Science & ...
in Saudi Arabia that enabled the science team to continue working at least through . On , the 18th meeting of the external GP-B Science Advisory Committee was held at Stanford to report progress. The ensuing SAC report to NASA states: The Stanford-based analysis group and NASA announced on that the data from GP-B indeed confirms the two predictions of Albert Einstein's general theory of relativity. The findings were published in the journal ''
Physical Review Letters ''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. As also confirmed by various measurement standards, which include the ''Journa ...
''. The prospects for further experimental measurement of frame-dragging after GP-B were commented on in the journal ''
Europhysics Letters ''EPL'' is a peer-reviewed scientific journal published by EDP Sciences, IOP Publishing and the Italian Physical Society on behalf of the European Physical Society and 17 other European physical societies. Prior to 1 January 2007 it was known as '' ...
''.


See also

*
Frame-dragging Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses ca ...
*
Gravity Probe A Gravity Probe A (GP-A) was a space-based experiment to test the equivalence principle, a feature of Einstein's theory of relativity. It was performed jointly by the Smithsonian Astrophysical Observatory and the National Aeronautics and Space ...
*
Gravitomagnetism Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain ...
*
Modified Newtonian dynamics Modified Newtonian dynamics (MOND) is a hypothesis that proposes a modification of Newton's law of universal gravitation to account for observed properties of galaxies. It is an alternative to the hypothesis of dark matter in terms of explaini ...
*
Tests of general relativity Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the ben ...
*
Timeline of gravitational physics and relativity The following is a timeline of gravitational physics and general relativity. Before 1500 * 3rd century BC - Aristarchus of Samos proposes heliocentric model, measures the distance to the Moon and its size 1500s * 1543 – Nicolaus Copernicus pl ...


References


External links


Gravity Probe B web site at NASA



Graphic explanation of how Gravity Probe B works

NASA GP-B launch site


*




IOP Classical and Quantum Gravity, Volume #32, Issue #22, Special Focus Issue on Gravity Probe B

Gravity Probe B Collection, The University of Alabama in Huntsville Archives and Special Collections
{{Orbital launches in 2004 Tests of general relativity Physics experiments Satellites orbiting Earth Spacecraft launched in 2004 Spacecraft launched by Delta II rockets