HOME

TheInfoList



OR:

Gravitational waves are waves of the intensity of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
. They were first proposed by
Oliver Heaviside Oliver Heaviside FRS (; 18 May 1850 – 3 February 1925) was an English self-taught mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently develope ...
in 1893 and then later by
Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "Th ...
in 1905 as waves similar to electromagnetic waves but the gravitational equivalent. Gravitational waves were later predicted in 1916 by
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
on the basis of his general theory of relativity as ripples in
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
. Later he refused to accept gravitational waves. Gravitational waves transport energy as gravitational radiation, a form of
radiant energy Radiant may refer to: Computers, software, and video games * Radiant (software), a content management system * GtkRadiant, a level editor created by id Software for their games * Radiant AI, a technology developed by Bethesda Softworks for ''Th ...
similar to
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
. Newton's law of universal gravitation, part of
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed)showing one of the ways the methods of Newtonian physics are unable to explain phenomena associated with relativity. The first indirect evidence for the existence of gravitational waves came in 1974 from the observed orbital decay of the Hulse–Taylor binary pulsar, which matched the decay predicted by general relativity as energy is lost to gravitational radiation. In 1993, Russell A. Hulse and Joseph Hooton Taylor Jr. received the
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
for this discovery. The first direct observation of gravitational waves was not made until 2015, when a signal generated by the merger of two black holes was received by the LIGO gravitational wave detectors in Livingston, Louisiana, and in Hanford, Washington. The 2017
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
was subsequently awarded to Rainer Weiss, Kip Thorne and
Barry Barish Barry Clark Barish (born January 27, 1936) is an American experimental physicist and Nobel Laureate. He is a Linde Professor of Physics, emeritus at California Institute of Technology and a leading expert on gravitational waves. In 2017, Ba ...
for their role in the direct detection of gravitational waves. Where General Relativity is accepted, gravitational waves as detected are attributed to ripples in spacetime, otherwise the gravitational waves can be thought of simply as a product of the orbit of binary systems (a binary orbit causes the binary system's geometry to change through 180 degrees and also causes the distance between each body of the binary system and the observer to change through 180 degrees causing a gravitational wave frequency of two times the orbital frequency). In
gravitational-wave astronomy Gravitational-wave astronomy is an emerging branch of observational astronomy which aims to use gravitational waves (minute distortions of spacetime predicted by Albert Einstein's theory of general relativity) to collect observational data abo ...
, observations of gravitational waves are used to infer data about the sources of gravitational waves. Sources that can be studied this way include
binary star A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in ...
systems composed of
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
s,
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s, and black holes; events such as
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
e; and the formation of the
early universe The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, with ...
shortly after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
.


Introduction

In Einstein's general theory of relativity,
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
is treated as a phenomenon resulting from the curvature of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
. This curvature is caused by the presence of
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
. Generally, the more mass that is contained within a given volume of space, the greater the curvature of spacetime will be at the boundary of its volume. As objects with mass move around in spacetime, the curvature changes to reflect the changed locations of those objects. In certain circumstances, accelerating objects generate changes in this curvature which propagate outwards at the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
in a wave-like manner. These propagating phenomena are known as gravitational waves. As a gravitational wave passes an observer, that observer will find spacetime distorted by the effects of strain. Distances between objects increase and decrease rhythmically as the wave passes, at a frequency equal to that of the wave. The magnitude of this effect is inversely proportional to the distance from the source. Inspiraling
binary neutron stars A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. whi ...
are predicted to be a powerful source of gravitational waves as they coalesce, due to the very large acceleration of their masses as they
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
close to one another. However, due to the astronomical distances to these sources, the effects when measured on Earth are predicted to be very small, having strains of less than 1 part in 1020. Scientists have demonstrated the existence of these waves with ever more sensitive detectors. The most sensitive detector accomplished the task possessing a sensitivity measurement of about one part in () provided by the LIGO and VIRGO observatories. In 2019, the Japanese detector
KAGRA The Kamioka Gravitational Wave Detector (KAGRA), is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. KAGRA is a Michelson interferometer that is isolated from external disturbances: its m ...
was completed and made its first joint detection with LIGO and VIRGO in 2021. A space based observatory, the Laser Interferometer Space Antenna, is currently under development by ESA. Another European ground based detector, the
Einstein Telescope Einstein Telescope (ET) or Einstein Observatory, is a proposed third-generation ground-based gravitational wave detector, currently under study by some institutions in the European Union. It will be able to test Einstein's general theory of r ...
, is also being developed. Gravitational waves can penetrate regions of space that electromagnetic waves cannot. They allow the observation of the merger of black holes and possibly other exotic objects in the distant Universe. Such systems cannot be observed with more traditional means such as
optical telescope An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through elect ...
s or
radio telescope A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency ...
s, and so
gravitational wave astronomy Gravitational-wave astronomy is an emerging branch of observational astronomy which aims to use gravitational waves (minute distortions of spacetime predicted by Albert Einstein's theory of general relativity) to collect observational data about ...
gives new insights into the working of the Universe. In particular, gravitational waves could be of interest to cosmologists as they offer a possible way of observing the very early Universe. This is not possible with conventional astronomy, since before recombination the Universe was opaque to electromagnetic radiation. Precise measurements of gravitational waves will also allow scientists to test more thoroughly the general theory of relativity. In principle, gravitational waves could exist at any frequency. However, very low frequency waves would be impossible to detect, and there is no credible source for detectable waves of very high frequency as well. Stephen Hawking and Werner Israel list different frequency bands for gravitational waves that could plausibly be detected, ranging from 10−7 Hz up to 1011 Hz.


Speed of gravity

The speed of gravitational waves in the general theory of relativity is equal to the ''
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
'' in a vacuum, . Within the theory of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
, the constant is not only about light; instead it is the highest possible speed for any interaction in nature. Formally, is a conversion factor for changing the unit of time to the unit of space. This makes it the only speed which does not depend either on the motion of an observer or a source of light and/or gravity. Thus, the speed of "light" is also the speed of gravitational waves, and further the speed of any massless particle. Such particles include the
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind ...
(carrier of the strong force), the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
s that make up light (hence carrier of electromagnetic force), and the hypothetical gravitons (which are the presumptive field particles associated with gravity; however, an understanding of the graviton, if any exist, requires an as-yet unavailable theory of quantum gravity). In August 2017, the LIGO and Virgo detectors received gravitational wave signals within 2 seconds of gamma ray satellites and optical telescopes seeing signals from the same direction. This confirmed that the speed of gravitational waves was the same as the speed of light.


History

The possibility of gravitational waves was discussed in 1893 by
Oliver Heaviside Oliver Heaviside FRS (; 18 May 1850 – 3 February 1925) was an English self-taught mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently develope ...
, using the analogy between the inverse-square law of gravitation and the electrostatic force. In 1905,
Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "Th ...
proposed gravitational waves, emanating from a body and propagating at the speed of light, as being required by the Lorentz transformations and suggested that, in analogy to an accelerating electrical charge producing
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
s, accelerated masses in a relativistic field theory of gravity should produce gravitational waves. When Einstein published his general theory of relativity in 1915, he was skeptical of Poincaré's idea since the theory implied there were no "gravitational dipoles". Nonetheless, he still pursued the idea and based on various approximations came to the conclusion there must, in fact, be three types of gravitational waves (dubbed longitudinal–longitudinal, transverse–longitudinal, and transverse–transverse by
Hermann Weyl Hermann Klaus Hugo Weyl, (; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, he is asso ...
). However, the nature of Einstein's approximations led many (including Einstein himself) to doubt the result. In 1922,
Arthur Eddington Sir Arthur Stanley Eddington (28 December 1882 – 22 November 1944) was an English astronomer, physicist, and mathematician. He was also a philosopher of science and a populariser of science. The Eddington limit, the natural limit to the lumi ...
showed that two of Einstein's types of waves were artifacts of the coordinate system he used, and could be made to propagate at any speed by choosing appropriate coordinates, leading Eddington to jest that they "propagate at the speed of thought". This also cast doubt on the physicality of the third (transverse–transverse) type that Eddington showed always propagate at the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
regardless of coordinate system. In 1936, Einstein and
Nathan Rosen Nathan Rosen (Hebrew: נתן רוזן; March 22, 1909 – December 18, 1995) was an American-Israeli physicist noted for his study on the structure of the hydrogen atom and his work with Albert Einstein and Boris Podolsky on entangled wave functio ...
submitted a paper to ''
Physical Review ''Physical Review'' is a peer-reviewed scientific journal established in 1893 by Edward Nichols. It publishes original research as well as scientific and literature reviews on all aspects of physics. It is published by the American Physical ...
'' in which they claimed gravitational waves could not exist in the full general theory of relativity because any such solution of the field equations would have a singularity. The journal sent their manuscript to be reviewed by
Howard P. Robertson Howard Percy "Bob" Robertson (January 27, 1903 – August 26, 1961) was an American mathematician and physicist known for contributions related to physical cosmology and the uncertainty principle. He was Professor of Mathematical Physics at the C ...
, who anonymously reported that the singularities in question were simply the harmless coordinate singularities of the employed cylindrical coordinates. Einstein, who was unfamiliar with the concept of peer review, angrily withdrew the manuscript, never to publish in ''Physical Review'' again. Nonetheless, his assistant
Leopold Infeld Leopold Infeld (20 August 1898 – 15 January 1968) was a Polish physicist who worked mainly in Poland and Canada (1938–1950). He was a Rockefeller fellow at Cambridge University (1933–1934) and a member of the Polish Academy of Sciences. E ...
, who had been in contact with Robertson, convinced Einstein that the criticism was correct, and the paper was rewritten with the opposite conclusion and published elsewhere. In 1956,
Felix Pirani __NOTOC__ Felix Arnold Edward Pirani (2 February 1928 – 31 December 2015) was a British theoretical physicist, and professor at King's College London, specialising in gravitational physics and general relativity. Pirani and Hermann Bondi wr ...
remedied the confusion caused by the use of various coordinate systems by rephrasing the gravitational waves in terms of the manifestly observable Riemann curvature tensor. At the time, Pirani's work was overshadowed by the community's focus on a different question: whether gravitational waves could transmit
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
. This matter was settled by a thought experiment proposed by Richard Feynman during the first "GR" conference at
Chapel Hill Chapel Hill or Chapelhill may refer to: Places Antarctica * Chapel Hill (Antarctica) Australia *Chapel Hill, Queensland, a suburb of Brisbane *Chapel Hill, South Australia, in the Mount Barker council area Canada *Chapel Hill, Ottawa, a neighbou ...
in 1957. In short, his argument known as the " sticky bead argument" notes that if one takes a rod with beads then the effect of a passing gravitational wave would be to move the beads along the rod; friction would then produce heat, implying that the passing wave had done work. Shortly after, Hermann Bondi, published a detailed version of the "sticky bead argument". This later lead to a series of articles (1959 to 1989) by Bondi and Pirani that established the existence of plane wave solutions for gravitational waves. After the Chapel Hill conference, Joseph Weber started designing and building the first gravitational wave detectors now known as Weber bars. In 1969, Weber claimed to have detected the first gravitational waves, and by 1970 he was "detecting" signals regularly from the Galactic Center; however, the frequency of detection soon raised doubts on the validity of his observations as the implied rate of energy loss of the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
would drain our galaxy of energy on a timescale much shorter than its inferred age. These doubts were strengthened when, by the mid-1970s, repeated experiments from other groups building their own Weber bars across the globe failed to find any signals, and by the late 1970s consensus was that Weber's results were spurious. In the same period, the first indirect evidence of gravitational waves was discovered. In 1974,
Russell Alan Hulse Russell Alan Hulse (born November 28, 1950) is an American physicist and winner of the Nobel Prize in Physics, shared with his thesis advisor Joseph Hooton Taylor Jr., "''for the discovery of a new type of pulsar, a discovery that has opened up ...
and Joseph Hooton Taylor, Jr. discovered the first binary pulsar, which earned them the 1993
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
. Pulsar timing observations over the next decade showed a gradual decay of the orbital period of the Hulse–Taylor pulsar that matched the loss of energy and angular momentum in gravitational radiation predicted by general relativity. This indirect detection of gravitational waves motivated further searches, despite Weber's discredited result. Some groups continued to improve Weber's original concept, while others pursued the detection of gravitational waves using laser interferometers. The idea of using a laser interferometer for this seems to have been floated independently by various people, including M. E. Gertsenshtein and V. I. Pustovoit in 1962, and Vladimir B. Braginskiĭ in 1966. The first prototypes were developed in the 1970s by Robert L. Forward and Rainer Weiss. In the decades that followed, ever more sensitive instruments were constructed, culminating in the construction of GEO600, LIGO, and Virgo. After years of producing null results, improved detectors became operational in 2015. On 11 February 2016, the LIGO-Virgo collaborations announced the first observation of gravitational waves, from a signal (dubbed
GW150914 The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on t ...
) detected at 09:50:45 GMT on 14 September 2015 of two black holes with masses of 29 and 36
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es merging about 1.3 billion light-years away. During the final fraction of a second of the merger, it released more than 50 times the power of all the stars in the observable universe combined. The signal increased in frequency from 35 to 250 Hz over 10 cycles (5 orbits) as it rose in strength for a period of 0.2 second. The mass of the new merged black hole was 62 solar masses. Energy equivalent to three solar masses was emitted as gravitational waves. The signal was seen by both LIGO detectors in Livingston and Hanford, with a time difference of 7 milliseconds due to the angle between the two detectors and the source. The signal came from the
Southern Celestial Hemisphere The southern celestial hemisphere, also called the Southern Sky, is the southern half of the celestial sphere; that is, it lies south of the celestial equator. This arbitrary sphere, on which seemingly fixed stars form constellations, appear ...
, in the rough direction of (but much farther away than) the Magellanic Clouds. The confidence level of this being an observation of gravitational waves was 99.99994%. A year earlier, the BICEP2 claimed that they had detected the imprint of gravitational waves in the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
. However, they were later forced to retract this result. In 2017, the
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
was awarded to Rainer Weiss, Kip Thorne and
Barry Barish Barry Clark Barish (born January 27, 1936) is an American experimental physicist and Nobel Laureate. He is a Linde Professor of Physics, emeritus at California Institute of Technology and a leading expert on gravitational waves. In 2017, Ba ...
for their role in the detection of gravitational waves.


Effects of passing

Gravitational waves are constantly passing
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
; however, even the strongest have a minuscule effect and their sources are generally at a great distance. For example, the waves given off by the cataclysmic final merger of
GW150914 The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on t ...
reached Earth after travelling over a billion
light-year A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distance, astronomical distances and is equivalent to about 9.46 Orders of magnitude (numbers)#1012, trillion kilometers (), or 5.88  ...
s, as a ripple in
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
that changed the length of a 4 km LIGO arm by a thousandth of the width of a
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
, proportionally equivalent to changing the distance to the nearest star outside the Solar System by one hair's width. This tiny effect from even extreme gravitational waves makes them observable on Earth only with the most sophisticated detectors. The effects of a passing gravitational wave, in an extremely exaggerated form, can be visualized by imagining a perfectly flat region of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
with a group of motionless test particles lying in a plane, e.g., the surface of a computer screen. As a gravitational wave passes through the particles along a line perpendicular to the plane of the particles, i.e., following the observer's line of vision into the screen, the particles will follow the distortion in spacetime, oscillating in a "
cruciform Cruciform is a term for physical manifestations resembling a common cross or Christian cross. The label can be extended to architectural shapes, biology, art, and design. Cruciform architectural plan Christian churches are commonly describe ...
" manner, as shown in the animations. The area enclosed by the test particles does not change and there is no motion along the direction of propagation. The oscillations depicted in the animation are exaggerated for the purpose of discussion in reality a gravitational wave has a very small
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
(as formulated in
linearized gravity In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effec ...
). However, they help illustrate the kind of oscillations associated with gravitational waves as produced by a pair of masses in a
circular orbit A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. Listed below is a circular orbit in astrodynamics or celestial mechanics under standard assumptions. Here the centripetal force is ...
. In this case the amplitude of the gravitational wave is constant, but its plane of polarization changes or rotates at twice the orbital rate, so the time-varying gravitational wave size, or 'periodic spacetime strain', exhibits a variation as shown in the animation. If the orbit of the masses is elliptical then the gravitational wave's amplitude also varies with time according to Einstein's
quadrupole formula In general relativity, the quadrupole formula describes the rate at which gravitational waves are emitted from a system of masses based on the change of the (mass) quadrupole moment. The formula reads : \bar_(t,r) = \frac \ddot_(t-r/c), where \bar ...
. As with other
wave In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (re ...
s, there are a number of characteristics used to describe a gravitational wave: * Amplitude: Usually denoted ''h'', this is the size of the wave the fraction of stretching or squeezing in the animation. The amplitude shown here is roughly ''h'' = 0.5 (or 50%). Gravitational waves passing through the Earth are many
sextillion Two naming scales for large numbers have been used in English and other European languages since the early modern era: the long and short scales. Most English variants use the short scale today, but the long scale remains dominant in many non-Eng ...
times weaker than this ''h'' ≈ 10−20. *
Frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
: Usually denoted ''f'', this is the frequency with which the wave oscillates (1 divided by the amount of time between two successive maximum stretches or squeezes) *
Wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
: Usually denoted ''λ'', this is the distance along the wave between points of maximum stretch or squeeze. *
Speed In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quant ...
: This is the speed at which a point on the wave (for example, a point of maximum stretch or squeeze) travels. For gravitational waves with small amplitudes, this wave speed is equal to the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
(''c''). The speed, wavelength, and frequency of a gravitational wave are related by the equation ''c = λf'', just like the equation for a
light wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) l ...
. For example, the animations shown here oscillate roughly once every two seconds. This would correspond to a frequency of 0.5 Hz, and a wavelength of about 600 000 km, or 47 times the diameter of the Earth. In the above example, it is assumed that the wave is linearly polarized with a "plus" polarization, written ''h''+. Polarization of a gravitational wave is just like polarization of a light wave except that the polarizations of a gravitational wave are 45 degrees apart, as opposed to 90 degrees. In particular, in a "cross"-polarized gravitational wave, ''h''×, the effect on the test particles would be basically the same, but rotated by 45 degrees, as shown in the second animation. Just as with light polarization, the polarizations of gravitational waves may also be expressed in terms of
circularly polarized In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and is rotating at a constant rate in a plane perpendicular to th ...
waves. Gravitational waves are polarized because of the nature of their source.


Sources

In general terms, gravitational waves are radiated by objects whose motion involves acceleration and its change, provided that the motion is not perfectly spherically symmetric (like an expanding or contracting sphere) or rotationally symmetric (like a spinning disk or sphere). A simple example of this principle is a spinning dumbbell. If the dumbbell spins around its axis of symmetry, it will not radiate gravitational waves; if it tumbles end over end, as in the case of two planets orbiting each other, it will radiate gravitational waves. The heavier the dumbbell, and the faster it tumbles, the greater is the gravitational radiation it will give off. In an extreme case, such as when the two weights of the dumbbell are massive stars like neutron stars or black holes, orbiting each other quickly, then significant amounts of gravitational radiation would be given off. Some more detailed examples: * Two objects orbiting each other, as a planet would orbit the Sun, ''will'' radiate. * A spinning non-axisymmetric planetoid say with a large bump or dimple on the equator ''will'' radiate. * A
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
''will'' radiate except in the unlikely event that the explosion is perfectly symmetric. * An isolated non-spinning solid object moving at a constant velocity ''will not'' radiate. This can be regarded as a consequence of the principle of
conservation of linear momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
. * A spinning disk ''will not'' radiate. This can be regarded as a consequence of the principle of
conservation of angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed sy ...
. However, it ''will'' show
gravitomagnetic Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain ...
effects. * A spherically pulsating spherical star (non-zero monopole moment or
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
, but zero quadrupole moment) ''will not'' radiate, in agreement with Birkhoff's theorem. More technically, the second time derivative of the
quadrupole moment A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure ref ...
(or the ''l''-th time derivative of the ''l''-th multipole moment) of an isolated system's
stress–energy tensor The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the str ...
must be non-zero in order for it to emit gravitational radiation. This is analogous to the changing dipole moment of charge or current that is necessary for the emission of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
.


Binaries

Gravitational waves carry energy away from their sources and, in the case of orbiting bodies, this is associated with an in-spiral or decrease in orbit. Imagine for example a simple system of two masses such as the Earth–Sun system moving slowly compared to the speed of light in circular orbits. Assume that these two masses orbit each other in a circular orbit in the ''x''–''y'' plane. To a good approximation, the masses follow simple Keplerian
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
s. However, such an orbit represents a changing
quadrupole moment A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure ref ...
. That is, the system will give off gravitational waves. In theory, the loss of energy through gravitational radiation could eventually drop the Earth into the Sun. However, the total energy of the Earth orbiting the Sun (
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acce ...
+ gravitational potential energy) is about 1.14 joules of which only 200
watt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James ...
s (joules per second) is lost through gravitational radiation, leading to a decay in the orbit by about 1 meters per day or roughly the diameter of a
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
. At this rate, it would take the Earth approximately 3 times more than the current age of the Universe to spiral onto the Sun. This estimate overlooks the decrease in ''r'' over time, but the radius varies only slowly for most of the time and plunges at later stages, as r(t)=r_0\left(1-\frac \right)^, with r_0 the initial radius and t_\text the total time needed to fully coalesce. More generally, the rate of orbital decay can be approximated by :\frac = - \frac\, \frac\, \frac\ , where ''r'' is the separation between the bodies, ''t'' time, ''G'' the
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
, ''c'' the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
, and ''m''1 and ''m''2 the masses of the bodies. This leads to an expected time to merger of :t= \frac\, \frac\, \frac.


Compact binaries

Compact stars like
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
s and
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s can be constituents of binaries. For example, a pair of
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
neutron stars in a circular orbit at a separation of 1.89 m (189,000 km) has an orbital period of 1,000 seconds, and an expected lifetime of 1.30 seconds or about 414,000 years. Such a system could be observed by LISA if it were not too far away. A far greater number of white dwarf binaries exist with orbital periods in this range. White dwarf binaries have masses in the order of the Sun, and diameters in the order of the Earth. They cannot get much closer together than 10,000 km before they will merge and explode in a
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
which would also end the emission of gravitational waves. Until then, their gravitational radiation would be comparable to that of a neutron star binary. When the orbit of a neutron star binary has decayed to 1.89 m (1890 km), its remaining lifetime is about 130,000 seconds or 36 hours. The orbital frequency will vary from 1 orbit per second at the start, to 918 orbits per second when the orbit has shrunk to 20 km at merger. The majority of gravitational radiation emitted will be at twice the orbital frequency. Just before merger, the inspiral could be observed by LIGO if such a binary were close enough. LIGO has only a few minutes to observe this merger out of a total orbital lifetime that may have been billions of years. In August 2017, LIGO and Virgo observed the first binary neutron star inspiral in
GW170817 GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy . The signal was produced by the last minutes of a binary pair of neutron stars' inspir ...
, and 70 observatories collaborated to detect the electromagnetic counterpart, a kilonova in the galaxy NGC 4993, 40 megaparsecs away, emitting a short gamma ray burst ( GRB 170817A) seconds after the merger, followed by a longer optical transient ( AT 2017gfo) powered by
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", ...
nuclei. Advanced LIGO detector should be able to detect such events up to 200 megaparsecs away. Within this range of the order 40 events are expected per year.


Black hole binaries

Black hole binaries emit gravitational waves during their in-spiral,
merger Mergers and acquisitions (M&A) are business transactions in which the ownership of companies, other business organizations, or their operating units are transferred to or consolidated with another company or business organization. As an aspec ...
, and ring-down phases. The largest amplitude of emission occurs during the merger phase, which can be modeled with the techniques of numerical relativity. The first direct detection of gravitational waves,
GW150914 The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on t ...
, came from the merger of two black holes.


Supernova

A supernova is a transient astronomical event that occurs during the last stellar evolutionary stages of a massive star's life, whose dramatic and catastrophic destruction is marked by one final titanic explosion. This explosion can happen in one of many ways, but in all of them a significant proportion of the matter in the star is blown away into the surrounding space at extremely high velocities (up to 10% of the speed of light). Unless there is perfect spherical symmetry in these explosions (i.e., unless matter is spewed out evenly in all directions), there will be gravitational radiation from the explosion. This is because gravitational waves are generated by a changing quadrupole moment, which can happen only when there is asymmetrical movement of masses. Since the exact mechanism by which supernovae take place is not fully understood, it is not easy to model the gravitational radiation emitted by them.


Spinning neutron stars

As noted above, a mass distribution will emit gravitational radiation only when there is spherically asymmetric motion among the masses. A spinning neutron star will generally emit no gravitational radiation because neutron stars are highly dense objects with a strong gravitational field that keeps them almost perfectly spherical. In some cases, however, there might be slight deformities on the surface called "mountains", which are bumps extending no more than 10 centimeters (4 inches) above the surface, that make the spinning spherically asymmetric. This gives the star a quadrupole moment that changes with time, and it will emit gravitational waves until the deformities are smoothed out.


Inflation

Many models of the Universe suggest that there was an inflationary epoch in the early history of the Universe when space expanded by a large factor in a very short amount of time. If this expansion was not symmetric in all directions, it may have emitted gravitational radiation detectable today as a gravitational wave background. This background signal is too weak for any currently operational gravitational wave detector to observe, and it is thought it may be decades before such an observation can be made.


Properties and behaviour


Energy, momentum, and angular momentum

Water waves, sound waves, and electromagnetic waves are able to carry
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
,
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
, and
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
and by doing so they carry those away from the source. Gravitational waves perform the same function. Thus, for example, a binary system loses angular momentum as the two orbiting objects spiral towards each other—the angular momentum is radiated away by gravitational waves. The waves can also carry off linear momentum, a possibility that has some interesting implications for
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
. After two supermassive black holes coalesce, emission of linear momentum can produce a "kick" with amplitude as large as 4000 km/s. This is fast enough to eject the coalesced black hole completely from its host galaxy. Even if the kick is too small to eject the black hole completely, it can remove it temporarily from the nucleus of the galaxy, after which it will oscillate about the center, eventually coming to rest. A kicked black hole can also carry a star cluster with it, forming a hyper-compact stellar system. Or it may carry gas, allowing the recoiling black hole to appear temporarily as a " naked quasar". The quasar SDSS J092712.65+294344.0 is thought to contain a recoiling supermassive black hole.


Redshifting

Like
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
s, gravitational waves should exhibit shifting of wavelength and frequency due to the relative velocities of the source and observer (the
Doppler effect The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who ...
), but also due to distortions of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
, such as cosmic expansion. This is the case even though gravity itself is a cause of distortions of spacetime. Redshifting ''of'' gravitational waves is different from redshifting ''due to'' gravity ( gravitational redshift).


Quantum gravity, wave-particle aspects, and graviton

In the framework of
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
, the graviton is the name given to a hypothetical
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, ...
speculated to be the
force carrier In quantum field theory, a force carrier, also known as messenger particle or intermediate particle, is a type of particle that gives rise to forces between other particles. These particles serve as the quanta of a particular kind of physical fi ...
that mediates
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. However the graviton is not yet proven to exist, and no scientific model yet exists that successfully reconciles
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, which describes gravity, and the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...
, which describes all other fundamental forces. Attempts, such as
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vi ...
, have been made, but are not yet accepted. If such a particle exists, it is expected to be massless (because the gravitational force appears to have unlimited range) and must be a
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
-2 boson. It can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress–energy tensor in the same way that the gravitational field does; therefore if a massless spin-2 particle were ever discovered, it would be likely to be the graviton without further distinction from other massless spin-2 particles. Such a discovery would unite quantum theory with gravity.


Significance for study of the early universe

Due to the weakness of the coupling of gravity to matter, gravitational waves experience very little absorption or scattering, even as they travel over astronomical distances. In particular, gravitational waves are expected to be unaffected by the opacity of the very early universe. In these early phases, space had not yet become "transparent", so observations based upon light, radio waves, and other electromagnetic radiation that far back into time are limited or unavailable. Therefore, gravitational waves are expected in principle to have the potential to provide a wealth of observational data about the very early universe.


Determining direction of travel

The difficulty in directly detecting gravitational waves means it is also difficult for a single detector to identify by itself the direction of a source. Therefore, multiple detectors are used, both to distinguish signals from other "noise" by confirming the signal is not of earthly origin, and also to determine direction by means of triangulation. This technique uses the fact that the waves travel at the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
and will reach different detectors at different times depending on their source direction. Although the differences in arrival time may be just a few
millisecond A millisecond (from '' milli-'' and second; symbol: ms) is a unit of time in the International System of Units (SI) equal to one thousandth (0.001 or 10−3 or 1/1000) of a second and to 1000 microseconds. A unit of 10 milliseconds may be calle ...
s, this is sufficient to identify the direction of the origin of the wave with considerable precision. Only in the case of GW170814 were three detectors operating at the time of the event, therefore, the direction is precisely defined. The detection by all three instruments led to a very accurate estimate of the position of the source, with a 90% credible region of just 60 deg2, a factor 20 more accurate than before.


Gravitational wave astronomy

During the past century,
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
has been revolutionized by the use of new methods for observing the universe. Astronomical observations were initially made using
visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
.
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He ...
pioneered the use of telescopes to enhance these observations. However, visible light is only a small portion of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging fro ...
, and not all objects in the distant universe shine strongly in this particular band. More information may be found, for example, in radio wavelengths. Using radio telescopes, astronomers have discovered
pulsars A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward E ...
and quasars, for example. Observations in the
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
band led to the detection of faint imprints of the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, a discovery Stephen Hawking called the "greatest discovery of the century, if not all time". Similar advances in observations using
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s,
x-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s,
ultraviolet light Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiatio ...
, and infrared light have also brought new insights to astronomy. As each of these regions of the spectrum has opened, new discoveries have been made that could not have been made otherwise. The astronomy community hopes that the same holds true of gravitational waves. Gravitational waves have two important and unique properties. First, there is no need for any type of matter to be present nearby in order for the waves to be generated by a binary system of uncharged black holes, which would emit no electromagnetic radiation. Second, gravitational waves can pass through any intervening matter without being scattered significantly. Whereas light from distant stars may be blocked out by
interstellar dust Cosmic dust, also called extraterrestrial dust, star dust or space dust, is dust which exists in outer space, or has fallen on Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 micrometers). Larger particles are c ...
, for example, gravitational waves will pass through essentially unimpeded. These two features allow gravitational waves to carry information about astronomical phenomena heretofore never observed by humans. The sources of gravitational waves described above are in the low-frequency end of the gravitational-wave spectrum (10−7 to 105 Hz). An astrophysical source at the high-frequency end of the gravitational-wave spectrum (above 105 Hz and probably 1010 Hz) generates relic gravitational waves that are theorized to be faint imprints of the Big Bang like the cosmic microwave background. At these high frequencies it is potentially possible that the sources may be "man made" that is, gravitational waves generated and detected in the laboratory.Li, Fangyu, Baker, R. M L, Jr., and Woods, R. C., "Piezoelectric-Crystal-Resonator High-Frequency Gravitational Wave Generation and Synchro-Resonance Detection", in the proceedings of ''Space Technology and Applications International Forum (STAIF-2006)'', edited by M.S. El-Genk, AIP Conference Proceedings, Melville NY 813: 2006. A supermassive black hole, created from the merger of the black holes at the center of two merging galaxies detected by the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
, is theorized to have been ejected from the merger center by gravitational waves.


Detection


Indirect detection

Although the waves from the Earth–Sun system are minuscule, astronomers can point to other sources for which the radiation should be substantial. One important example is the Hulse–Taylor binary a pair of stars, one of which is a
pulsar A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Ea ...
. The characteristics of their orbit can be deduced from the
Doppler shift The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who ...
ing of radio signals given off by the pulsar. Each of the stars is about and the size of their orbits is about 1/75 of the Earth–Sun orbit, just a few times larger than the diameter of our own Sun. The combination of greater masses and smaller separation means that the energy given off by the Hulse–Taylor binary will be far greater than the energy given off by the Earth–Sun system roughly 1022 times as much. The information about the orbit can be used to predict how much energy (and angular momentum) would be radiated in the form of gravitational waves. As the binary system loses energy, the stars gradually draw closer to each other, and the orbital period decreases. The resulting trajectory of each star is an inspiral, a spiral with decreasing radius. General relativity precisely describes these trajectories; in particular, the energy radiated in gravitational waves determines the rate of decrease in the period, defined as the time interval between successive periastrons (points of closest approach of the two stars). For the Hulse–Taylor pulsar, the predicted current change in radius is about 3 mm per orbit, and the change in the 7.75 hr period is about 2 seconds per year. Following a preliminary observation showing an orbital energy loss consistent with gravitational waves, careful timing observations by Taylor and Joel Weisberg dramatically confirmed the predicted period decrease to within 10%. With the improved statistics of more than 30 years of timing data since the pulsar's discovery, the observed change in the orbital period currently matches the prediction from gravitational radiation assumed by general relativity to within 0.2 percent. In 1993, spurred in part by this indirect detection of gravitational waves, the Nobel Committee awarded the Nobel Prize in Physics to Hulse and Taylor for "the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation." The lifetime of this binary system, from the present to merger is estimated to be a few hundred million years. Inspirals are very important sources of gravitational waves. Any time two compact objects (white dwarfs, neutron stars, or
black holes A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
) are in close orbits, they send out intense gravitational waves. As they spiral closer to each other, these waves become more intense. At some point they should become so intense that direct detection by their effect on objects on Earth or in space is possible. This direct detection is the goal of several large-scale experiments. The only difficulty is that most systems like the Hulse–Taylor binary are so far away. The amplitude of waves given off by the Hulse–Taylor binary at Earth would be roughly ''h'' ≈ 10−26. There are some sources, however, that astrophysicists expect to find that produce much greater amplitudes of ''h'' ≈ 10−20. At least eight other binary pulsars have been discovered.


Difficulties

Gravitational waves are not easily detectable. When they reach the Earth, they have a small amplitude with strain approximately 10−21, meaning that an extremely sensitive detector is needed, and that other sources of noise can overwhelm the signal. Gravitational waves are expected to have frequencies 10−16 Hz < ''f'' < 104 Hz.


Negative-mass plasma

One possible explanation for the difficulties with direct observation of gravitational waves was proposed by cosmologists Saoussen Mbarek and Manu Paranjape after they demonstrated the possible existence of
negative mass In theoretical physics, negative mass is a type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and show some strange properties such as t ...
without violating Einsteinian relativity. Earlier research dismissed the concept due to seemingly violating the
energy condition In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically-phrased mathem ...
, however Mbarek and Paranjape found that negative matter could still exist in our universe if it was assumed to take the form of a perfect fluid rather than a conventional solid, where negative and positive particles combine in
de Sitter space In mathematical physics, ''n''-dimensional de Sitter space (often abbreviated to dS''n'') is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an ''n''-sphere (with its canoni ...
into a sort of plasma. One notable property of this plasma is the ability to absorb gravitational waves, suggesting that difficulties in direct detection might stem from the universe being populated by gravitationally "opaque" clouds of positive-negative plasma which effectively screen the Earth from detecting such waves.


Ground-based detectors

Though the Hulse–Taylor observations were very important, they give only ''indirect'' evidence for gravitational waves. A more conclusive observation would be a ''direct'' measurement of the effect of a passing gravitational wave, which could also provide more information about the system that generated it. Any such direct detection is complicated by the extraordinarily small effect the waves would produce on a detector. The amplitude of a spherical wave will fall off as the inverse of the distance from the source (the 1/''R'' term in the formulas for ''h'' above). Thus, even waves from extreme systems like merging binary black holes die out to very small amplitudes by the time they reach the Earth. Astrophysicists expect that some gravitational waves passing the Earth may be as large as ''h'' ≈ 10−20, but generally no bigger.


Resonant antennas

A simple device theorised to detect the expected wave motion is called a Weber bar a large, solid bar of metal isolated from outside vibrations. This type of instrument was the first type of gravitational wave detector. Strains in space due to an incident gravitational wave excite the bar's
resonant frequency Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscilla ...
and could thus be amplified to detectable levels. Conceivably, a nearby supernova might be strong enough to be seen without resonant amplification. With this instrument, Joseph Weber claimed to have detected daily signals of gravitational waves. His results, however, were contested in 1974 by physicists
Richard Garwin Richard Lawrence Garwin (born April 19, 1928) is an American physicist, best known as the author of the first hydrogen bomb design. In 1978, Garwin was elected a member of the National Academy of Engineering for contributing to the application ...
and David Douglass. Modern forms of the Weber bar are still operated,
cryogenically In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “ ...
cooled, with superconducting quantum interference devices to detect vibration. Weber bars are not sensitive enough to detect anything but extremely powerful gravitational waves. MiniGRAIL is a spherical gravitational wave antenna using this principle. It is based at
Leiden University Leiden University (abbreviated as ''LEI''; nl, Universiteit Leiden) is a public research university in Leiden, Netherlands. The university was founded as a Protestant university in 1575 by William, Prince of Orange, as a reward to the city o ...
, consisting of an exactingly machined 1,150 kg sphere cryogenically cooled to 20 millikelvins. The spherical configuration allows for equal sensitivity in all directions, and is somewhat experimentally simpler than larger linear devices requiring high vacuum. Events are detected by measuring deformation of the detector sphere. MiniGRAIL is highly sensitive in the 2–4 kHz range, suitable for detecting gravitational waves from rotating neutron star instabilities or small black hole mergers. There are currently two detectors focused on the higher end of the gravitational wave spectrum (10−7 to 105 Hz): one at
University of Birmingham , mottoeng = Through efforts to heights , established = 1825 – Birmingham School of Medicine and Surgery1836 – Birmingham Royal School of Medicine and Surgery1843 – Queen's College1875 – Mason Science College1898 – Mason Univers ...
, England, and the other at INFN Genoa, Italy. A third is under development at Chongqing University, China. The Birmingham detector measures changes in the polarization state of a
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
beam circulating in a closed loop about one meter across. Both detectors are expected to be sensitive to periodic spacetime strains of ''h'' ~ , given as an amplitude spectral density. The INFN Genoa detector is a resonant antenna consisting of two coupled spherical superconducting harmonic oscillators a few centimeters in diameter. The oscillators are designed to have (when uncoupled) almost equal resonant frequencies. The system is currently expected to have a sensitivity to periodic spacetime strains of ''h'' ~ , with an expectation to reach a sensitivity of ''h'' ~ . The Chongqing University detector is planned to detect relic high-frequency gravitational waves with the predicted typical parameters ≈1011 Hz (100 GHz) and ''h'' ≈10−30 to 10−32.


Interferometers

A more sensitive class of detector uses a laser Michelson interferometer to measure gravitational-wave induced motion between separated 'free' masses. This allows the masses to be separated by large distances (increasing the signal size); a further advantage is that it is sensitive to a wide range of frequencies (not just those near a resonance as is the case for Weber bars). After years of development the first ground-based interferometers became operational in 2015. Currently, the most sensitive is LIGO the Laser Interferometer Gravitational Wave Observatory. LIGO has three detectors: one in Livingston, Louisiana, one at the Hanford site in Richland, Washington and a third (formerly installed as a second detector at Hanford) that is planned to be moved to
India India, officially the Republic of India (Hindi: ), is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area, the List of countries and dependencies by population, second-most populous ...
. Each observatory has two light storage arms that are 4 kilometers in length. These are at 90 degree angles to each other, with the light passing through 1 m diameter vacuum tubes running the entire 4 kilometers. A passing gravitational wave will slightly stretch one arm as it shortens the other. This is precisely the motion to which an interferometer is most sensitive. Even with such long arms, the strongest gravitational waves will only change the distance between the ends of the arms by at most roughly 10−18 m. LIGO should be able to detect gravitational waves as small as ''h'' ~ . Upgrades to LIGO and Virgo should increase the sensitivity still further. Another highly sensitive interferometer,
KAGRA The Kamioka Gravitational Wave Detector (KAGRA), is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. KAGRA is a Michelson interferometer that is isolated from external disturbances: its m ...
, which is located in the
Kamioka Observatory The is a neutrino and gravitational waves laboratory located underground in the Mozumi mine of the Kamioka Mining and Smelting Co. near the Kamioka section of the city of Hida in Gifu Prefecture, Japan. A set of groundbreaking neutrino experim ...
in Japan, is in operation since February 2020. A key point is that a tenfold increase in sensitivity (radius of 'reach') increases the volume of space accessible to the instrument by one thousand times. This increases the rate at which detectable signals might be seen from one per tens of years of observation, to tens per year. Interferometric detectors are limited at high frequencies by
shot noise Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process. In electronics shot noise originates from the discrete nature of electric charge. Shot noise also occurs in photon counting in optical devices, where sh ...
, which occurs because the lasers produce photons randomly; one analogy is to rainfall the rate of rainfall, like the laser intensity, is measurable, but the raindrops, like photons, fall at random times, causing fluctuations around the average value. This leads to noise at the output of the detector, much like radio static. In addition, for sufficiently high laser power, the random momentum transferred to the test masses by the laser photons shakes the mirrors, masking signals of low frequencies. Thermal noise (e.g., Brownian motion) is another limit to sensitivity. In addition to these 'stationary' (constant) noise sources, all ground-based detectors are also limited at low frequencies by seismic noise and other forms of environmental vibration, and other 'non-stationary' noise sources; creaks in mechanical structures, lightning or other large electrical disturbances, etc. may also create noise masking an event or may even imitate an event. All of these must be taken into account and excluded by analysis before detection may be considered a true gravitational wave event.


Einstein@Home

The simplest gravitational waves are those with constant frequency. The waves given off by a spinning, non-axisymmetric neutron star would be approximately monochromatic: a pure tone in
acoustics Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acousticia ...
. Unlike signals from supernovae or binary black holes, these signals evolve little in amplitude or frequency over the period it would be observed by ground-based detectors. However, there would be some change in the measured signal, because of
Doppler shift The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who ...
ing caused by the motion of the Earth. Despite the signals being simple, detection is extremely computationally expensive, because of the long stretches of data that must be analysed. The
Einstein@Home Einstein@Home is a volunteer computing project that searches for signals from spinning neutron stars in data from gravitational-wave detectors, from large radio telescopes, and from a gamma-ray telescope. Neutron stars are detected by their pul ...
project is a
distributed computing A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another from any system. Distributed computing is a field of computer sci ...
project similar to SETI@home intended to detect this type of gravitational wave. By taking data from LIGO and GEO, and sending it out in little pieces to thousands of volunteers for parallel analysis on their home computers, Einstein@Home can sift through the data far more quickly than would be possible otherwise.


Space-based interferometers

Space-based interferometers, such as LISA and DECIGO, are also being developed. LISA's design calls for three test masses forming an equilateral triangle, with lasers from each spacecraft to each other spacecraft forming two independent interferometers. LISA is planned to occupy a solar orbit trailing the Earth, with each arm of the triangle being five million kilometers. This puts the detector in an excellent vacuum far from Earth-based sources of noise, though it will still be susceptible to heat,
shot noise Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process. In electronics shot noise originates from the discrete nature of electric charge. Shot noise also occurs in photon counting in optical devices, where sh ...
, and artifacts caused by
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s and solar wind.


Using pulsar timing arrays

Pulsars are rapidly rotating stars. A pulsar emits beams of radio waves that, like lighthouse beams, sweep through the sky as the pulsar rotates. The signal from a pulsar can be detected by radio telescopes as a series of regularly spaced pulses, essentially like the ticks of a clock. GWs affect the time it takes the pulses to travel from the pulsar to a telescope on Earth. A pulsar timing array uses millisecond pulsars to seek out perturbations due to GWs in measurements of the time of arrival of pulses to a telescope, in other words, to look for deviations in the clock ticks. To detect GWs, pulsar timing arrays search for a distinct pattern of correlation and anti-correlation between the time of arrival of pulses from several pulsars. Although pulsar pulses travel through space for hundreds or thousands of years to reach us, pulsar timing arrays are sensitive to perturbations in their travel time of much less than a millionth of a second. The principal source of GWs to which pulsar timing arrays are sensitive are super-massive black hole binaries, that form from the collision of galaxies. In addition to individual binary systems, pulsar timing arrays are sensitive to a stochastic background of GWs made from the sum of GWs from many galaxy mergers. Other potential signal sources include
cosmic strings Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not s ...
and the primordial background of GWs from
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from  seconds after the conjectured Big Bang singular ...
. Globally there are three active pulsar timing array projects. The North American Nanohertz Observatory for Gravitational Waves uses data collected by the Arecibo Radio Telescope and Green Bank Telescope. The Australian Parkes Pulsar Timing Array uses data from the Parkes radio-telescope. The European Pulsar Timing Array uses data from the four largest telescopes in Europe: the Lovell Telescope, the Westerbork Synthesis Radio Telescope, the Effelsberg Telescope and the Nancay Radio Telescope. These three groups also collaborate under the title of the International Pulsar Timing Array project.


Primordial gravitational wave

Primordial gravitational waves are gravitational waves observed in the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
. They were allegedly detected by the
BICEP2 BICEP (Background Imaging of Cosmic Extragalactic Polarization) and the Keck Array are a series of cosmic microwave background (CMB) experiments. They aim to measure the polarization of the CMB; in particular, measuring the ''B''-mode of the CMB ...
instrument, an announcement made on 17 March 2014, which was withdrawn on 30 January 2015 ("the signal can be entirely attributed to
dust Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in ...
in the Milky Way").


LIGO and Virgo observations

On 11 February 2016, the LIGO collaboration announced the first observation of gravitational waves, from a signal detected at 09:50:45 GMT on 14 September 2015 of two black holes with masses of 29 and 36
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es merging about 1.3 billion light-years away. During the final fraction of a second of the merger, it released more than 50 times the power of all the stars in the observable universe combined. The signal increased in frequency from 35 to 250 Hz over 10 cycles (5 orbits) as it rose in strength for a period of 0.2 second. The mass of the new merged black hole was 62 solar masses. Energy equivalent to three solar masses was emitted as gravitational waves. The signal was seen by both LIGO detectors in Livingston and Hanford, with a time difference of 7 milliseconds due to the angle between the two detectors and the source. The signal came from the
Southern Celestial Hemisphere The southern celestial hemisphere, also called the Southern Sky, is the southern half of the celestial sphere; that is, it lies south of the celestial equator. This arbitrary sphere, on which seemingly fixed stars form constellations, appear ...
, in the rough direction of (but much farther away than) the Magellanic Clouds. The gravitational waves were observed in the region more than 5 sigma (in other words, 99.99997% chances of showing/getting the same result), the probability of finding enough to have been assessed/considered as the evidence/proof in a
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs whe ...
of statistical physics. Since then LIGO and Virgo have reported more gravitational wave observations from merging black hole binaries. On 16 October 2017, the LIGO and Virgo collaborations announced the first-ever detection of gravitational waves originating from the coalescence of a binary neutron star system. The observation of the
GW170817 GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy . The signal was produced by the last minutes of a binary pair of neutron stars' inspir ...
transient, which occurred on 17 August 2017, allowed for constraining the masses of the neutron stars involved between 0.86 and 2.26 solar masses. Further analysis allowed a greater restriction of the mass values to the interval 1.17–1.60 solar masses, with the total system mass measured to be 2.73–2.78 solar masses. The inclusion of the Virgo detector in the observation effort allowed for an improvement of the localization of the source by a factor of 10. This in turn facilitated the electromagnetic follow-up of the event. In contrast to the case of binary black hole mergers, binary neutron star mergers were expected to yield an electromagnetic counterpart, that is, a light signal associated with the event. A gamma-ray burst ( GRB 170817A) was detected by the Fermi Gamma-ray Space Telescope, occurring 1.7 seconds after the gravitational wave transient. The signal, originating near the galaxy NGC 4993, was associated with the neutron star merger. This was corroborated by the electromagnetic follow-up of the event ( AT 2017gfo), involving 70 telescopes and observatories and yielding observations over a large region of the electromagnetic spectrum which further confirmed the neutron star nature of the merged objects and the associated kilonova. In 2021, the detection of the first two neutron star-black hole binaries by the LIGO and VIRGO detectors was published in the Astrophysical Journal Letters, allowing to first set bounds on the quantity of such systems. No neutron star-black hole binary had ever been observed using conventional means before the gravitational observation.


Microscopic sources

In 1964 Halpern and Laurent theoretically proved that gravitational spin-2 electron transitions are possible in atoms. Compared to electric and magnetic transitions the emission probability is extremely low. Stimulated emission was discussed for increasing the efficiency of the process. Due to the lack of mirrors or resonators for gravitational waves, they determined that a single pass GASER (a kind of laser emitting gravitational waves) is practically unfeasible. A possibility of a different implementation of the above theoretical analysis was proposed by Giorgio Fontana. The required coherence for a practical GASER could be obtained by cooper pairs in superconductors that are characterized by a macroscopic collective wave-function. Cuprate
high temperature superconductors High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previo ...
are characterized by the presence of s-wave and d-wave cooper pairs. Transitions between s-wave and d-wave are gravitational spin-2. Out of equilibrium conditions can be induced by injecting s-wave cooper pairs from a low temperature superconductor, for instance
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
or niobium , which is pure s-wave, by means of a Josephson junction with high critical current. The amplification mechanism can be described as the effect of superradiance, and 10 cubic centimeters of cuprate high temperature superconductor seem sufficient for the mechanism to properly work. A detailed description of the approach can be found in "High Temperature Superconductors as Quantum Sources of Gravitational Waves: The HTSC GASER". Chapter 3 of this book.


In fiction

An episode of the 1962 Russian science-fiction novel '' Space Apprentice'' by Arkady and Boris Strugatsky shows the experiment monitoring the propagation of gravitational waves at the expense of annihilating a chunk of asteroid 15 Eunomia the size of
Mount Everest Mount Everest (; Tibetan: ''Chomolungma'' ; ) is Earth's highest mountain above sea level, located in the Mahalangur Himal sub-range of the Himalayas. The China–Nepal border runs across its summit point. Its elevation (snow hei ...
. In Stanislaw Lem's 1986 novel ''
Fiasco Fiasco may refer to: * a failure or humiliating situation * Fiasco (bottle), a traditional Italian straw-covered wine bottle often associated with Chianti wine Media * ''Fiasco'' (novel), a 1987 science-fiction novel by Stanisław Lem * '' ...
'', a "gravity gun" or "gracer" (gravity amplification by collimated emission of resonance) is used to reshape a collapsar, so that the protagonists can exploit the extreme relativistic effects and make an interstellar journey. In
Greg Egan Greg Egan (born 20 August 1961) is an Australian science fiction writer and amateur mathematician, best known for his works of hard science fiction. Egan has won multiple awards including the John W. Campbell Memorial Award, the Hugo Award ...
's 1997 novel ''
Diaspora A diaspora ( ) is a population that is scattered across regions which are separate from its geographic place of origin. Historically, the word was used first in reference to the dispersion of Greeks in the Hellenic world, and later Jews after ...
'', the analysis of a gravitational wave signal from the inspiral of a nearby binary neutron star reveals that its collision and merger is imminent, implying a large gamma-ray burst is going to impact the Earth. In Liu Cixin's 2006 ''
Remembrance of Earth's Past ''Remembrance of Earth's Past'' () is a science fiction series by Chinese writer Liu Cixin. The series is also popularly referred to as ''Three-Body'' from part of the title of its first novel, '' The Three-Body Problem'' (). The series details ...
'' series, gravitational waves are used as an interstellar broadcast signal, which serves as a central plot point in the conflict between civilizations within the galaxy.


See also

* 2017
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
, which was awarded to three individual physicists for their role in the discovery of and testing for the waves * Anti-gravity * Artificial gravity * First observation of gravitational waves *
Gravitational plane wave In general relativity, a gravitational plane wave is a special class of a vacuum pp-wave spacetime, and may be defined in terms of Brinkmann coordinates by ds^2= (u)(x^2-y^2)+2b(u)xyu^2+2dudv+dx^2+dy^2 Here, a(u), b(u) can be any smooth functions ...
*
Gravitational field In physics, a gravitational field is a model used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body. Thus, a gravitational field is used to explain gravitational pheno ...
*
Gravitational-wave astronomy Gravitational-wave astronomy is an emerging branch of observational astronomy which aims to use gravitational waves (minute distortions of spacetime predicted by Albert Einstein's theory of general relativity) to collect observational data abo ...
* Gravitational wave background * Gravitational-wave observatory *
Gravitomagnetism Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain ...
* Graviton (and Gravitational wave observation § Gravitons) * Hawking radiation, for gravitationally induced electromagnetic radiation from black holes *
HM Cancri , - style="vertical-align: top;" , Distance , 1,600 Light-years , - ! style="background-color: #FFFFC0;" colspan="2" , Binary orbit , - style="vertical-align: top;" , Period (P) , 321.5 seconds , - style="vertical-align: top;" , dP/dt ...
* LISA, DECIGO and BBO – Proposed space-based detectors * LIGO,
Virgo interferometer The Virgo interferometer is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. Virgo is a Michelson interferometer that is isolated from external disturbances: its mirrors and instrumen ...
, GEO600,
KAGRA The Kamioka Gravitational Wave Detector (KAGRA), is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. KAGRA is a Michelson interferometer that is isolated from external disturbances: its m ...
, and
TAMA 300 TAMA 300 is a gravitational wave detector located at the Mitaka campus of the National Astronomical Observatory of Japan. It is a project of the gravitational wave studies group at the Institute for Cosmic Ray Research (ICRR) of the University of ...
– Ground-based gravitational-wave detectors *
Linearized gravity In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effec ...
* Peres metric *
pp-wave spacetime In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term ''pp'' stands for ''plane-fronted waves with parallel propagation'', and was introduced in 19 ...
, for an important class of exact solutions modelling gravitational radiation *
PSR B1913+16 PSR may refer to: Organizations * Pacific School of Religion, Berkeley, California, US * Palestinian Center for Policy and Survey Research * Physicians for Social Responsibility, US ;Political parties: * Revolutionary Socialist Party (Portugal) ( ...
, the first
binary pulsar A binary pulsar is a pulsar with a binary companion, often a white dwarf or neutron star. (In at least one case, the double pulsar PSR J0737-3039, the companion neutron star is another pulsar as well.) Binary pulsars are one of the few objects ...
discovered and the first experimental evidence for the existence of gravitational waves. *
Spin-flip A black hole spin-flip occurs when the spin axis of a rotating black hole undergoes a sudden change in orientation due to absorption of a second (smaller) black hole. Spin-flips are believed to be a consequence of galaxy mergers, when two supe ...
, a consequence of gravitational wave emission from binary supermassive black holes * Sticky bead argument, for a physical way to see that gravitational radiation should carry energy * Tidal force


References


Further reading

* Bartusiak, Marcia. ''Einstein's Unfinished Symphony''. Washington, DC: Joseph Henry Press, 2000. * * Landau, L. D. and Lifshitz, E. M., ''The Classical Theory of Fields'' (Pergamon Press), 1987. * * *


Bibliography

* Berry, Michael, ''Principles of Сosmology and Gravitation'' (Adam Hilger, Philadelphia, 1989). * Collins, Harry, ''Gravity's Shadow: The Search for Gravitational Waves'', University of Chicago Press, 2004. * Collins, Harry, ''Gravity's Kiss: The Detection of Gravitational Waves'' (The MIT Press, Cambridge Massachusetts, 2017). . * Davies, P.C.W., ''The Search for Gravity Waves'' (Cambridge University Press, 1980). . * Grote, Hartmut, ''Gravitational Waves: A history of discovery'' (CRC Press, Taylor & Francis Group, Boca Raton/London/New York, 2020). . * P. J. E. Peebles, ''Principles of Physical Cosmology'' (Princeton University Press, Princeton, 1993). . * Wheeler, John Archibald and Ciufolini, Ignazio, ''Gravitation and Inertia'' (Princeton University Press, Princeton, 1995). . * Woolf, Harry, ed., ''Some Strangeness in the Proportion'' (Addison–Wesley, Reading, Massachusetts, 1980). .


External links


Laser Interferometer Gravitational Wave Observatory
LIGO Laboratory, operated by the California Institute of Technology and the
Massachusetts Institute of Technology The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of th ...

Gravitational Waves
– Collected articles at Nature Journal
Gravitational Waves
– Collected articles
Scientific American ''Scientific American'', informally abbreviated ''SciAm'' or sometimes ''SA'', is an American popular science magazine. Many famous scientists, including Albert Einstein and Nikola Tesla, have contributed articles to it. In print since 1845, it ...

Video (94:34) – Scientific Talk on Discovery
Barry Barish, CERN (11 February 2016) * {{DEFAULTSORT:Gravitational Wave Binary stars Black holes Effects of gravitation Concepts in astronomy Unsolved problems in physics