Georg Cantor
   HOME

TheInfoList



OR:

Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
, which has become a
fundamental theory Fundamental may refer to: * Foundation of reality * Fundamental frequency, as in music or phonetics, often referred to as simply a "fundamental" * Fundamentalism, the belief in, and usually the strict adherence to, the simple or "fundamental" i ...
in mathematics. Cantor established the importance of one-to-one correspondence between the members of two sets, defined infinite and well-ordered sets, and proved that the
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s are more numerous than the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s. In fact, Cantor's method of proof of this theorem implies the existence of an
infinity Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions am ...
of infinities. He defined the cardinal and ordinal numbers and their arithmetic. Cantor's work is of great philosophical interest, a fact he was well aware of. Originally, Cantor's theory of transfinite numbers was regarded as counter-intuitive – even shocking. This caused it to encounter resistance from mathematical contemporaries such as Leopold Kronecker and
Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The ...
and later from Hermann Weyl and L. E. J. Brouwer, while
Ludwig Wittgenstein Ludwig Josef Johann Wittgenstein ( ; ; 26 April 1889 – 29 April 1951) was an Austrian- British philosopher who worked primarily in logic, the philosophy of mathematics, the philosophy of mind, and the philosophy of language. He is cons ...
raised philosophical objections; see Controversy over Cantor's theory. Cantor, a devout
Lutheran Christian Lutheranism is one of the largest branches of Protestantism, identifying primarily with the theology of Martin Luther, the 16th-century German monk and reformer whose efforts to reform the theology and practice of the Catholic Church launched th ...
, believed the theory had been communicated to him by God. Dauben 2004, pp. 8, 11, 12–13. Some Christian theologians (particularly neo-Scholastics) saw Cantor's work as a challenge to the uniqueness of the absolute infinity in the nature of God Dauben 1977, p. 86; Dauben 1979, pp. 120, 143. – on one occasion equating the theory of transfinite numbers with
pantheism Pantheism is the belief that reality, the universe and the cosmos are identical with divinity and a supreme supernatural being or entity, pointing to the universe as being an immanent creator deity still expanding and creating, which has ...
 – a proposition that Cantor vigorously rejected. It is important to note that not all theologians were against Cantor's theory; prominent neo-scholastic philosopher Constantin Gutberlet was in favor of it and Cardinal Johann Baptist Franzelin accepted it as a valid theory (after Cantor made some important clarifications). The objections to Cantor's work were occasionally fierce: Leopold Kronecker's public opposition and personal attacks included describing Cantor as a "scientific charlatan", a "renegade" and a "corrupter of youth". Kronecker objected to Cantor's proofs that the algebraic numbers are countable, and that the transcendental numbers are uncountable, results now included in a standard mathematics curriculum. Writing decades after Cantor's death, Wittgenstein lamented that mathematics is "ridden through and through with the pernicious idioms of set theory", which he dismissed as "utter nonsense" that is "laughable" and "wrong". Cantor's recurring bouts of depression from 1884 to the end of his life have been blamed on the hostile attitude of many of his contemporaries, Dauben 1979, p. 280: "... the tradition made popular by Arthur Moritz Schönflies blamed Kronecker's persistent criticism and Cantor's inability to confirm his continuum hypothesis" for Cantor's recurring bouts of depression. though some have explained these episodes as probable manifestations of a
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of depression and periods of abnormally elevated mood that last from days to weeks each. If the elevated mood is severe or associated with ...
. Dauben 2004, p. 1. Text includes a 1964 quote from psychiatrist Karl Pollitt, one of Cantor's examining physicians at Halle Nervenklinik, referring to Cantor's mental illness as "cyclic manic-depression". The harsh criticism has been matched by later accolades. In 1904, the
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, r ...
awarded Cantor its Sylvester Medal, the highest honor it can confer for work in mathematics. David Hilbert defended it from its critics by declaring, "No one shall expel us from the paradise that Cantor has created."


Biography


Youth and studies

Georg Cantor, born in 1845 in the western merchant colony of
Saint Petersburg Saint Petersburg ( rus, links=no, Санкт-Петербург, a=Ru-Sankt Peterburg Leningrad Petrograd Piter.ogg, r=Sankt-Peterburg, p=ˈsankt pʲɪtʲɪrˈburk), formerly known as Petrograd (1914–1924) and later Leningrad (1924–1991), i ...
, Russia, was brought up in that city until the age of eleven. The oldest of six children, he was regarded as an outstanding violinist. His grandfather Franz Böhm (1788–1846) (the violinist Joseph Böhm's brother) was a well-known musician and soloist in a Russian imperial orchestra. Cantor's father had been a member of the
Saint Petersburg stock exchange SPB Exchange (formerly JSC "Saint-Petersburg Exchange") is located in Moscow, Russia. In 1997, Non-Profit Partnership “Saint Petersburg Stock Exchange” was created and became the first licensed stock exchange in Russia, with NP RTS as one of ...
; when he became ill, the family moved to Germany in 1856, first to
Wiesbaden Wiesbaden () is a city in central western Germany and the capital of the state of Hesse. , it had 290,955 inhabitants, plus approximately 21,000 United States citizens (mostly associated with the United States Army). The Wiesbaden urban area ...
, then to
Frankfurt Frankfurt, officially Frankfurt am Main (; Hessian: , " Frank ford on the Main"), is the most populous city in the German state of Hesse. Its 791,000 inhabitants as of 2022 make it the fifth-most populous city in Germany. Located on its ...
, seeking milder winters than those of Saint Petersburg. In 1860, Cantor graduated with distinction from the Realschule in
Darmstadt Darmstadt () is a city in the States of Germany, state of Hesse in Germany, located in the southern part of the Frankfurt Rhine Main Area, Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt has around 160,000 inhabitants, making it th ...
; his exceptional skills in mathematics, trigonometry in particular, were noted. In August 1862, he then graduated from the "Höhere Gewerbeschule Darmstadt", now the Technische Universität Darmstadt. In 1862 Cantor entered the
Swiss Federal Polytechnic ETH Zürich (English language, English: ETH; Swiss Federal Institute of Technology in Zürich; german: Eidgenössische Technische Hochschule Zürich) is a public university, public research university in the city of Zürich, Switzerland. Founded b ...
in Zurich. After receiving a substantial inheritance upon his father's death in June 1863, Cantor transferred to the University of Berlin, attending lectures by Leopold Kronecker, Karl Weierstrass and
Ernst Kummer Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician. Skilled in applied mathematics, Kummer trained German army officers in ballistics; afterwards, he taught for 10 years in a '' gymnasium'', the German equivalent of ...
. He spent the summer of 1866 at the
University of Göttingen The University of Göttingen, officially the Georg August University of Göttingen, (german: Georg-August-Universität Göttingen, known informally as Georgia Augusta) is a public research university in the city of Göttingen, Germany. Founded i ...
, then and later a center for mathematical research. Cantor was a good student, and he received his doctoral degree in 1867.


Teacher and researcher

Cantor submitted his dissertation on
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
at the University of Berlin in 1867. After teaching briefly in a Berlin girls' school, he took up a position at the
University of Halle Martin Luther University of Halle-Wittenberg (german: Martin-Luther-Universität Halle-Wittenberg), also referred to as MLU, is a public, research-oriented university in the cities of Halle and Wittenberg and the largest and oldest university i ...
, where he spent his entire career. He was awarded the requisite habilitation for his thesis, also on number theory, which he presented in 1869 upon his appointment at Halle University. In 1874, Cantor married Vally Guttmann. They had six children, the last (Rudolph) born in 1886. Cantor was able to support a family despite his modest academic pay, thanks to his inheritance from his father. During his honeymoon in the Harz mountains, Cantor spent much time in mathematical discussions with
Richard Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
, whom he had met at Interlaken in Switzerland two years earlier while on holiday. Cantor was promoted to extraordinary professor in 1872 and made full professor in 1879. To attain the latter rank at the age of 34 was a notable accomplishment, but Cantor desired a
chair A chair is a type of seat, typically designed for one person and consisting of one or more legs, a flat or slightly angled seat and a back-rest. They may be made of wood, metal, or synthetic materials, and may be padded or upholstered in vari ...
at a more prestigious university, in particular at Berlin, at that time the leading German university. However, his work encountered too much opposition for that to be possible. Dauben 1979, p. 163. Kronecker, who headed mathematics at Berlin until his death in 1891, became increasingly uncomfortable with the prospect of having Cantor as a colleague, Dauben 1979, p. 34. perceiving him as a "corrupter of youth" for teaching his ideas to a younger generation of mathematicians. Worse yet, Kronecker, a well-established figure within the mathematical community and Cantor's former professor, disagreed fundamentally with the thrust of Cantor's work ever since he had intentionally delayed the publication of Cantor's first major publication in 1874. Kronecker, now seen as one of the founders of the constructive viewpoint in mathematics, disliked much of Cantor's set theory because it asserted the existence of sets satisfying certain properties, without giving specific examples of sets whose members did indeed satisfy those properties. Whenever Cantor applied for a post in Berlin, he was declined, and the process usually involved Kronecker, so Cantor came to believe that Kronecker's stance would make it impossible for him ever to leave Halle. In 1881, Cantor's Halle colleague Eduard Heine died. Halle accepted Cantor's suggestion that Heine's vacant chair be offered to Dedekind, Heinrich M. Weber and Franz Mertens, in that order, but each declined the chair after being offered it. Friedrich Wangerin was eventually appointed, but he was never close to Cantor. In 1882, the mathematical correspondence between Cantor and Dedekind came to an end, apparently as a result of Dedekind's declining the chair at Halle. Cantor also began another important correspondence, with Gösta Mittag-Leffler in Sweden, and soon began to publish in Mittag-Leffler's journal ''Acta Mathematica''. But in 1885, Mittag-Leffler was concerned about the philosophical nature and new terminology in a paper Cantor had submitted to ''Acta''. Dauben 1979, p. 138. He asked Cantor to withdraw the paper from ''Acta'' while it was in proof, writing that it was "... about one hundred years too soon." Cantor complied, but then curtailed his relationship and correspondence with Mittag-Leffler, writing to a third party, "Had Mittag-Leffler had his way, I should have to wait until the year 1984, which to me seemed too great a demand! ... But of course I never want to know anything again about ''Acta Mathematica''." Dauben 1979, p. 139. Cantor suffered his first known bout of depression in May 1884. Criticism of his work weighed on his mind: every one of the fifty-two letters he wrote to Mittag-Leffler in 1884 mentioned Kronecker. A passage from one of these letters is revealing of the damage to Cantor's self-confidence: This crisis led him to apply to lecture on philosophy rather than on mathematics. He also began an intense study of Elizabethan literature, thinking there might be evidence that
Francis Bacon Francis Bacon, 1st Viscount St Alban (; 22 January 1561 – 9 April 1626), also known as Lord Verulam, was an English philosopher and statesman who served as Attorney General and Lord Chancellor of England. Bacon led the advancement of both ...
wrote the plays attributed to
William Shakespeare William Shakespeare ( 26 April 1564 – 23 April 1616) was an English playwright, poet and actor. He is widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist. He is often called England's natio ...
(see
Shakespearean authorship question Image:ShakespeareCandidates1.jpg, alt=Portraits of Shakespeare and four proposed alternative authors, Oxford, Bacon, Derby, and Marlowe (clockwise from top left, Shakespeare centre) have each been proposed as the true author. poly 1 1 105 ...
); this ultimately resulted in two pamphlets, published in 1896 and 1897. Cantor recovered soon thereafter, and subsequently made further important contributions, including his diagonal argument and
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of ...
. However, he never again attained the high level of his remarkable papers of 1874–84, even after Kronecker's death on December 29, 1891. He eventually sought, and achieved, a reconciliation with Kronecker. Nevertheless, the philosophical disagreements and difficulties dividing them persisted. In 1889, Cantor was instrumental in founding the German Mathematical Society, and he chaired its first meeting in Halle in 1891, where he first introduced his diagonal argument; his reputation was strong enough, despite Kronecker's opposition to his work, to ensure he was elected as the first president of this society. Setting aside the animosity Kronecker had displayed towards him, Cantor invited him to address the meeting, but Kronecker was unable to do so because his wife was dying from injuries sustained in a skiing accident at the time. Georg Cantor was also instrumental in the establishment of the first International Congress of Mathematicians, which took place in Zürich, Switzerland, in 1897.


Later years and death

After Cantor's 1884 hospitalization there is no record that he was in any sanatorium again until 1899. Dauben 1979, p. 282. Soon after that second hospitalization, Cantor's youngest son Rudolph died suddenly on December 16 (Cantor was delivering a lecture on his views on Baconian theory and
William Shakespeare William Shakespeare ( 26 April 1564 – 23 April 1616) was an English playwright, poet and actor. He is widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist. He is often called England's natio ...
), and this tragedy drained Cantor of much of his passion for mathematics. Dauben 1979, p. 283. Cantor was again hospitalized in 1903. One year later, he was outraged and agitated by a paper presented by
Julius König The gens Julia (''gēns Iūlia'', ) was one of the most prominent patrician families in ancient Rome. Members of the gens attained the highest dignities of the state in the earliest times of the Republic. The first of the family to obtain the c ...
at the Third International Congress of Mathematicians. The paper attempted to prove that the basic tenets of
transfinite set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, ...
were false. Since the paper had been read in front of his daughters and colleagues, Cantor perceived himself as having been publicly humiliated. Although
Ernst Zermelo Ernst Friedrich Ferdinand Zermelo (, ; 27 July 187121 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel axiomatic s ...
demonstrated less than a day later that König's proof had failed, Cantor remained shaken, and momentarily questioning God. Dauben 1979, p. 248. Cantor suffered from chronic depression for the rest of his life, for which he was excused from teaching on several occasions and repeatedly confined to various sanatoria. The events of 1904 preceded a series of hospitalizations at intervals of two or three years. He did not abandon mathematics completely, however, lecturing on the paradoxes of set theory ( Burali-Forti paradox, Cantor's paradox, and
Russell's paradox In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contain ...
) to a meeting of the ''Deutsche Mathematiker-Vereinigung'' in 1903, and attending the International Congress of Mathematicians at Heidelberg in 1904. In 1911, Cantor was one of the distinguished foreign scholars invited to the 500th anniversary of the founding of the University of St. Andrews in Scotland. Cantor attended, hoping to meet
Bertrand Russell Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British mathematician, philosopher, logician, and public intellectual. He had a considerable influence on mathematics, logic, set theory, linguistics, ar ...
, whose newly-published '' Principia Mathematica'' repeatedly cited Cantor's work, but the encounter did not come about. The following year, St. Andrews awarded Cantor an honorary doctorate, but illness precluded his receiving the degree in person. Cantor retired in 1913, and lived in poverty and suffering from malnourishment during
World War I World War I (28 July 1914 11 November 1918), often abbreviated as WWI, was List of wars and anthropogenic disasters by death toll, one of the deadliest global conflicts in history. Belligerents included much of Europe, the Russian Empire, ...
. Dauben 1979, p. 284. The public celebration of his 70th birthday was canceled because of the war. In June 1917, he entered a sanatorium for the last time and continually wrote to his wife asking to be allowed to go home. Georg Cantor had a fatal heart attack on January 6, 1918, in the sanatorium where he had spent the last year of his life.


Mathematical work

Cantor's work between 1874 and 1884 is the origin of
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
. Prior to this work, the concept of a set was a rather elementary one that had been used implicitly since the beginning of mathematics, dating back to the ideas of
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical Greece, Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatet ...
. No one had realized that set theory had any nontrivial content. Before Cantor, there were only finite sets (which are easy to understand) and "the infinite" (which was considered a topic for philosophical, rather than mathematical, discussion). By proving that there are (infinitely) many possible sizes for infinite sets, Cantor established that set theory was not trivial, and it needed to be studied.
Set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
has come to play the role of a foundational theory in modern mathematics, in the sense that it interprets propositions about mathematical objects (for example, numbers and functions) from all the traditional areas of mathematics (such as
algebra Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
,
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
, and
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
) in a single theory, and provides a standard set of axioms to prove or disprove them. The basic concepts of set theory are now used throughout mathematics. In one of his earliest papers, Cantor proved that the set of
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s is "more numerous" than the set of
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s; this showed, for the first time, that there exist infinite sets of different sizes. He was also the first to appreciate the importance of one-to-one correspondences (hereinafter denoted "1-to-1 correspondence") in set theory. He used this concept to define finite and
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only ...
s, subdividing the latter into
denumerable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
(or countably infinite) sets and nondenumerable sets (uncountably infinite sets). Cantor developed important concepts in
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
and their relation to
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
. For example, he showed that the Cantor set, discovered by Henry John Stephen Smith in 1875, is nowhere dense, but has the same cardinality as the set of all real numbers, whereas the rationals are everywhere dense, but countable. He also showed that all countable dense linear orders without end points are order-isomorphic to the rational numbers. Cantor introduced fundamental constructions in set theory, such as the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is ...
of a set ''A'', which is the set of all possible
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
s of ''A''. He later proved that the size of the power set of ''A'' is strictly larger than the size of ''A'', even when ''A'' is an infinite set; this result soon became known as Cantor's theorem. Cantor developed an entire theory and arithmetic of infinite sets, called cardinals and ordinals, which extended the arithmetic of the natural numbers. His notation for the cardinal numbers was the Hebrew letter \aleph (
aleph Aleph (or alef or alif, transliterated ʾ) is the first letter of the Semitic abjads, including Phoenician , Hebrew , Aramaic , Syriac , Arabic ʾ and North Arabian 𐪑. It also appears as South Arabian 𐩱 and Ge'ez . These let ...
) with a natural number subscript; for the ordinals he employed the Greek letter ω (
omega Omega (; capital: Ω, lowercase: ω; Ancient Greek ὦ, later ὦ μέγα, Modern Greek ωμέγα) is the twenty-fourth and final letter in the Greek alphabet. In the Greek numeric system/ isopsephy ( gematria), it has a value of 800. Th ...
). This notation is still in use today. The ''
Continuum hypothesis In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent ...
'', introduced by Cantor, was presented by David Hilbert as the first of his twenty-three open problems in his address at the 1900 International Congress of Mathematicians in Paris. Cantor's work also attracted favorable notice beyond Hilbert's celebrated encomium. The US philosopher
Charles Sanders Peirce Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American philosopher, logician, mathematician and scientist who is sometimes known as "the father of pragmatism". Educated as a chemist and employed as a scientist for ...
praised Cantor's set theory and, following public lectures delivered by Cantor at the first International Congress of Mathematicians, held in Zürich in 1897, Adolf Hurwitz and Jacques Hadamard also both expressed their admiration. At that Congress, Cantor renewed his friendship and correspondence with Dedekind. From 1905, Cantor corresponded with his British admirer and translator Philip Jourdain on the history of
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
and on Cantor's religious ideas. This was later published, as were several of his expository works.


Number theory, trigonometric series and ordinals

Cantor's first ten papers were on
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
, his thesis topic. At the suggestion of Eduard Heine, the Professor at Halle, Cantor turned to
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
. Heine proposed that Cantor solve an open problem that had eluded Peter Gustav Lejeune Dirichlet, Rudolf Lipschitz, Bernhard Riemann, and Heine himself: the uniqueness of the representation of a function by trigonometric series. Cantor solved this problem in 1869. It was while working on this problem that he discovered transfinite ordinals, which occurred as indices ''n'' in the ''n''th derived set ''S''''n'' of a set ''S'' of zeros of a trigonometric series. Given a trigonometric series f(x) with ''S'' as its set of zeros, Cantor had discovered a procedure that produced another trigonometric series that had ''S''1 as its set of zeros, where ''S''1 is the set of limit points of ''S''. If ''S''''k+1'' is the set of limit points of ''S''''k'', then he could construct a trigonometric series whose zeros are ''S''''k+1''. Because the sets ''S''''k'' were closed, they contained their limit points, and the intersection of the infinite decreasing sequence of sets ''S'', ''S''1, ''S''2, ''S''3,... formed a limit set, which we would now call ''S''''ω'', and then he noticed that ''S''ω would also have to have a set of limit points ''S''ω+1, and so on. He had examples that went on forever, and so here was a naturally occurring infinite sequence of infinite numbers ''ω'', ''ω'' + 1, ''ω'' + 2, ... Between 1870 and 1872, Cantor published more papers on trigonometric series, and also a paper defining irrational numbers as convergent sequences of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s. Dedekind, whom Cantor befriended in 1872, cited this paper later that year, in the paper where he first set out his celebrated definition of real numbers by
Dedekind cut In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind but previously considered by Joseph Bertrand, are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of the ...
s. While extending the notion of number by means of his revolutionary concept of infinite cardinality, Cantor was paradoxically opposed to theories of infinitesimals of his contemporaries Otto Stolz and Paul du Bois-Reymond, describing them as both "an abomination" and "a cholera bacillus of mathematics". Cantor also published an erroneous "proof" of the inconsistency of infinitesimals.


Set theory

The beginning of set theory as a branch of mathematics is often marked by the publication of Cantor's 1874 paper, "Ueber