HOME

TheInfoList




Gasoline () or petrol () (see the
etymology Etymology ()The New Oxford Dictionary of English ''The'' () is a grammatical article Article often refers to: * Article (grammar) An article is any member of a class of dedicated words that are used with noun phrases to mark the identi ...
for naming differences and the use of the term ''gas'') is a transparent,
petroleum Petroleum, also known as crude oil and oil, is a naturally occurring, yellowish-black liquid A liquid is a nearly incompressible In fluid mechanics or more generally continuum mechanics, incompressible flow (isochoric process, isoc ...

petroleum
-derived
flammable liquid A flammable liquid is a combustible liquid A liquid is a nearly incompressible In fluid mechanics or more generally continuum mechanics, incompressible flow (isochoric process, isochoric flow) refers to a fluid flow, flow in which the mat ...

flammable liquid
that is used primarily as a
fuel A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy Thermal radiation in visible light can be seen on this hot metalwork. Thermal energy refers to several distinct physical conc ...

fuel
in most spark-ignited
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine In thermodynamics Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and ...

internal combustion engine
s. It consists mostly of
organic compound In chemistry Chemistry is the study of the properties and behavior of . It is a that covers the that make up matter to the composed of s, s and s: their composition, structure, properties, behavior and the changes they undergo during ...
s obtained by the
fractional distillation Fractional distillation is the separation of a mixture In chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matt ...
of
petroleum Petroleum, also known as crude oil and oil, is a naturally occurring, yellowish-black liquid A liquid is a nearly incompressible In fluid mechanics or more generally continuum mechanics, incompressible flow (isochoric process, isoc ...

petroleum
, enhanced with a variety of additives. On average, a
barrel A barrel or cask is a hollow cylindrical A cylinder (from ) has traditionally been a Solid geometry, three-dimensional solid, one of the most basic of curvilinear geometric shapes. Geometrically, it can be considered as a Prism (geometry), ...

barrel
of
crude oil Petroleum, also known as crude oil and oil, is a naturally occurring, yellowish-black liquid A liquid is a nearly incompressible In fluid mechanics or more generally continuum mechanics, incompressible flow (isochoric process, isoc ...

crude oil
can yield up to about of gasoline after processing in an
oil refinery An oil refinery or petroleum refinery is an industrial processes, industrial process Factory, plant where petroleum (crude oil) is transformed and refining, refined into useful products such as gasoline (petrol), diesel fuel, asphalt, asphalt ba ...
, depending on the
crude oil assay A crude oil assay is the chemical evaluation of crude oil Petroleum, also known as crude oil and oil, is a naturally occurring, yellowish-black liquid A liquid is a nearly incompressible In fluid mechanics or more generally continuum ...
and on what other refined products are also extracted. The characteristic of a particular gasoline blend to resist igniting too early (which causes knocking and reduces efficiency in
reciprocating engines , internal combustion, gasoline engine, gasoline piston engine. A reciprocating engine, also often known as a piston engine, is typically a heat engine (although there are also pneumatic motor, pneumatic and hydraulic motor, hydraulic reciprocatin ...
) is measured by its
octane rating An octane rating, or octane number, is a standard measure of a fuel A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy Thermal radiation in visible light can be seen on this ho ...
, which is produced in several grades.
Tetraethyl lead Tetraethyllead (commonly styled tetraethyl lead), abbreviated TEL, is an organolead compound with the formula (ethyl group, CH3CH2)4lead, Pb. It is a petro-fuel additive, first being mixed with gasoline #History, beginning in the 1920s as a paten ...
and other lead compounds, once widely used to increase octane ratings, are no longer used except in aviation and off-road and auto-racing applications. Other chemicals are frequently added to gasoline to improve chemical stability and performance characteristics, control corrosiveness, and provide fuel system cleaning. Gasoline may contain oxygen-containing chemicals such as
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ (anatomy), ...

ethanol
,
MTBE Methyl ''tertiary''-butyl ether (MTBE), also known as methyl tert-butyl ether and ''tert''-butyl methyl ether, is an organic compound In chemistry Chemistry is the study of the properties and behavior of . It is a that covers the th ...

MTBE
, or
ETBE Ethyl ''tertiary''-butyl ether (ETBE), also known as ethyl ''tert''-butyl ether, is commonly used as an oxygenate Oxygenated chemical compounds contain oxygen Oxygen is the chemical element with the chemical symbol, symbol O and a ...
to improve combustion. Gasoline can enter the environment uncombusted, both as liquid and as vapor, from leakage and handling during production, transport, and delivery (e.g., from storage tanks, from spills, etc.). As an example of efforts to control such leakage, many underground storage tanks are required to have extensive measures in place to detect and prevent such leaks. Gasoline contains known
carcinogen A carcinogen is any substance, radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is an atom An atom is the smallest unit of ordinary matter In classical physics and general chemistry, matter is any ...
s. Burning a liter of gasoline emits about 2.3 kg of contributing to human-caused
climate change Contemporary climate change includes both the global warming caused by humans, and its impacts on Earth's weather patterns. There have been previous periods of climate change, but the current changes are more rapid than any known even ...
.


Etymology

"Gasoline" is an English word that denotes fuel for
automobile A car (or automobile) is a wheeled motor vehicle Electric bicycles parked in Yangzhou's main street, Wenchang Lu. They are a very common way of transport in this city, in some areas almost outnumbering regular bicycles A motor vehicle, also ...

automobile
s. The term is thought to have been influenced by the trademark "Cazeline" or "Gazeline", named after the surname of British publisher, coffee merchant, and social campaigner
John Cassell John Cassell (23 January 1817 – 2 April 1865) was an English English usually refers to: * English language English is a West Germanic languages, West Germanic language first spoken in History of Anglo-Saxon England, early medieval Eng ...

John Cassell
. On 27 November 1862, Cassell placed an advertisement in ''
The Times ''The Times'' is a British Newspaper#Daily, daily Newspaper#National, national newspaper based in London. It began in 1785 under the title ''The Daily Universal Register'', adopting its current name on 1 January 1788. ''The Times'' and its s ...
'' of London: This is the earliest occurrence of the word to have been found. Cassell discovered that a shopkeeper in Dublin named Samuel Boyd was selling counterfeit cazeline and wrote to him to ask him to stop. Boyd did not reply and changed every ‘C’ into a ‘G’, thus coining the word "gazeline". The ''Oxford English Dictionary'' dates its first recorded use to 1863 when it was spelled "gasolene". The term "gasoline" was first used in North America in 1864. In most
Commonwealth A commonwealth is a traditional English term for a political community founded for the common good In philosophy Philosophy (from , ) is the study of general and fundamental questions, such as those about reason, Metaphysics, existenc ...

Commonwealth
countries (except Canada), the product is called "petrol", rather than "gasoline". The word ''
petroleum Petroleum, also known as crude oil and oil, is a naturally occurring, yellowish-black liquid A liquid is a nearly incompressible In fluid mechanics or more generally continuum mechanics, incompressible flow (isochoric process, isoc ...

petroleum
'', originally used to refer to various types of
mineral oil Mineral oil is any of various colorless, odorless, light mixtures of higher alkanes from a mineral source, particularly a distillate of petroleum, as distinct from usually edible vegetable oils. The name 'mineral oil' by itself is imprecise, h ...
s and literally meaning "rock oil", comes from
Medieval Latin Medieval Latin was the form of Latin Latin (, or , ) is a classical language A classical language is a language A language is a structured system of communication Communication (from Latin ''communicare'', meaning "to share ...
(''
petra The Positron-Electron Tandem Ring Accelerator (PETRA) is one of the particle accelerator , a synchrotron collider type particle accelerator at Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, USA. Shut down in 2011, until 2007 ...

petra
'', "rock", and ''
oleum Oleum (Latin ''oleum'', meaning oil), or fuming sulfuric acid, is a term referring to solutions of various compositions of sulfur trioxide in sulfuric acid, or sometimes more specifically to disulfuric acid (also known as pyrosulfuric acid). Oleum ...

oleum
'', "oil"). "Petrol" was used as a product name in about 1870, as the name of a refined mineral oil product sold by British wholesaler Carless, Capel & Leonard, which marketed it as a
solvent A solvent (from the Latin Latin (, or , ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken in the area around Rome, known as Latium. Through the power of the ...

solvent
. When the product later found a new use as a motor fuel, Frederick Simms, an associate of
Gottlieb Daimler Gottlieb Wilhelm Daimler (; 17 March 1834 – 6 March 1900) was a German engineer Engineers, as practitioners of engineering Engineering is the use of scientific method, scientific principles to design and build machines, structures ...
, suggested to John Leonard, the owner of Carless, that they register the trademark "Petrol", but by that time the word was already in general use, possibly inspired by the French ''pétrole'',gasoline, ''n.'', and gasoline, ''n.,'' Oxford English Dictionary online edition and the registration was not allowed because the word was a general descriptor; Carless was still able to defend its use of "Petrol" as a product name due to their having sold it under that name for many years by then. Carless registered a number of alternative names for the product, but "petrol" nonetheless became the common term for the fuel in the British Commonwealth. British refiners originally used "motor spirit" as a generic name for the automotive fuel and "aviation spirit" for
aviation gasoline Avgas (aviation gasoline, also known as aviation spirit in the UK) is an aviation fuel 250px, At some airports, underground fuel pipes allow refueling without the need for tank trucks. Trucks carry the necessary hoses and pumping equipment, but ...
. When Carless was denied a trademark on "petrol" in the 1930s, its competitors switched to the more popular name "petrol". However, "motor spirit" had already made its way into laws and regulations, so the term remains in use as a formal name for petrol. The term is used most widely in Nigeria, where the largest petroleum companies call their product "premium motor spirit". Although "petrol" has made inroads into Nigerian English, "premium motor spirit" remains the formal name that is used in scientific publications, government reports, and newspapers. The use of the word ''gasoline'' (or ''gas'') instead of ''petrol'' is uncommon outside North America, although ''gasolina'' is used in Spanish and Portuguese, particularly given the usual shortening of ''gasoline'' to ''gas'', because various forms of
gas Gas is one of the four fundamental states of matter In physics Physics is the natural science that studies matter, its Elementary particle, fundamental constituents, its Motion (physics), motion and behavior through Spacetime, space ...

gas
eous products are also used as automotive fuel, such as compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG). In many languages, the name of the product is derived from
benzene Benzene is an organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ (anatomy), organ Chemistry * Organic matter, matter that has come from a once-living organi ...

benzene
, such as ''Benzin'' in Persian (
Persian Persian may refer to: * People and things from Iran, historically called ''Persia'' in the English language ** Persians, Persian people, the majority ethnic group in Iran, not to be conflated with the Iranian peoples ** Persian language, an Iranian ...
: بنزین), Russian (бензин), Turkish, and German, ''benzina'' in Italian, or ''bensin'' in Indonesian; but in Argentina, Uruguay, and Paraguay, the colloquial name ''nafta'' is derived from that of the chemical
naphtha Naphtha ( or ) is a flammable liquid hydrocarbon mixture. Mixtures labelled ''naphtha'' have been produced from natural gas condensate Natural-gas condensate, also called natural gas liquids, is a low-density mixture of hydrocarbon liquids th ...
.


History

The first internal combustion engines suitable for use in transportation applications, so-called
Otto engine The Otto engine was a large stationary single-cylinder internal combustion An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber t ...
s, were developed in Germany during the last quarter of the 19th century. The fuel for these early engines was a relatively volatile
hydrocarbon In , a hydrocarbon is an consisting entirely of and . Hydrocarbons are examples of s. Hydrocarbons are generally colourless and hydrophobic with only weak odours. Because of their diverse molecular structures, it is difficult to generalize furth ...
obtained from
coal gas Coal gas is a flammable gaseous fuel Fuel gas is any one of a number of fuels that under ordinary conditions are gaseous. Many fuel gases are composed of hydrocarbons (such as methane or propane), hydrogen, carbon monoxide, or mixtures there ...

coal gas
. With a
boiling point The boiling point of a substance is the temperature at which the vapor pressure 280px, The ''pistol test tube'' experiment. The tube contains alcohol and is closed with a piece of cork. By heating the alcohol, the vapors fill in the space, inc ...
near ( ''n''-octane boils about 40 °C higher), it was well-suited for early
carburetor A carburetor (American English American English (AmE, AE, AmEng, USEng, en-US), sometimes called United States English or U.S. English, is the set of varieties of the English language native to the United States. Currently, American Eng ...

carburetor
s (evaporators). The development of a "spray nozzle" carburetor enabled the use of less volatile fuels. Further improvements in engine efficiency were attempted at higher
compression ratio The compression ratio is the ratio between the volume of the cylinder A cylinder (from ) has traditionally been a Solid geometry, three-dimensional solid, one of the most basic of curvilinear geometric shapes. Geometrically, it can be conside ...

compression ratio
s, but early attempts were blocked by the premature explosion of fuel, known as knocking. In 1891, the
Shukhov cracking process 200px, Factory of Vladimir Shukhov, Shukhov cracking process, Baku, USSR, 1934 The Shukhov cracking process is a Cracking (chemistry), thermal cracking process invented by Vladimir Shukhov and Sergei Gavrilov. Shukhov designed and built the first ...
became the world's first commercial method to break down heavier hydrocarbons in crude oil to increase the percentage of lighter products compared to simple distillation.


1903 to 1914

The evolution of gasoline followed the evolution of oil as the dominant source of energy in the industrializing world. Before World War One, Britain was the world's greatest industrial power and depended on its navy to protect the shipping of raw materials from its colonies. Germany was also industrializing and, like Britain, lacked many natural resources which had to be shipped to the home country. By the 1890s, Germany began to pursue a policy of global prominence and began building a navy to compete with Britain's. Coal was the fuel that powered their navies. Though both Britain and Germany had natural coal reserves, new developments in oil as a fuel for ships changed the situation. Coal-powered ships were a tactical weakness because the process of loading coal was extremely slow and dirty and left the ship completely vulnerable to attack, and unreliable supplies of coal at international ports made long-distance voyages impractical. The advantages of petroleum oil soon found the navies of the world converting to oil, but Britain and Germany had very few domestic oil reserves. Britain eventually solved its naval oil dependence by securing oil from
Royal Dutch Shell Royal Dutch Shell plc (to be renamed Shell plc effective 24 January 2022), commonly known as Shell, is a British British may refer to: Peoples, culture, and language * British people, nationals or natives of the United Kingdom, British Overs ...
and the
Anglo-Persian Oil Company The Anglo-Persian Oil Company (APOC) was a British company founded in 1908 following the discovery of a large oil field in Masjed Soleiman, Iran. The British government purchased 51% of the company in 1914, gaining a controlling number of shares, e ...
and this determined from where and of what quality its gasoline would come. During the early period of gasoline engine development, aircraft were forced to use motor vehicle gasoline since aviation gasoline did not yet exist. These early fuels were termed "straight-run" gasolines and were byproducts from the distillation of a single crude oil to produce
kerosene Kerosene, paraffin, or lamp oil is a combustible , Germany ) , image_map = , map_caption = , map_width = 250px , capital = Berlin , coordinates = , largest_city = capital , languages_type = Official language , languages = G ...

kerosene
, which was the principal product sought for burning in
kerosene lamp A kerosene lamp (also known as a paraffin lamp in some countries) is a type of lighting device that uses kerosene as a fuel. Kerosene lamps have a Candle wick, wick or gas mantle, mantle as light source, protected by a glass chimney or globe; la ...

kerosene lamp
s. Gasoline production would not surpass kerosene production until 1916. The earliest straight-run gasolines were the result of distilling eastern crude oils and there was no mixing of distillates from different crudes. The composition of these early fuels was unknown and the quality varied greatly as crude oils from different oil fields emerged in different mixtures of hydrocarbons in different ratios. The engine effects produced by abnormal combustion (
engine knocking Knocking (also knock, detonation, spark knock, pinging or pinking) in spark ignition internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine In thermodynamics Thermodynamics is a branch of phy ...
and
pre-ignitionPre-ignition (or preignition) in a spark-ignition engine A spark-ignition engine (SI engine) is an internal combustion engine An internal combustion engine (ICE) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usuall ...
) due to inferior fuels had not yet been identified, and as a result, there was no rating of gasoline in terms of its resistance to abnormal combustion. The general specification by which early gasolines were measured was that of
specific gravity Relative density, or specific gravity, is the ratio In mathematics, a ratio indicates how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemon ...
via the
Baumé scale The Baumé scale is a pair of hydrometer A hydrometer is an instrument used for measuring the relative density of liquids based on the concept of buoyancy. They are typically Calibration, calibrated and Graduation (instrument), graduated with one ...
and later the volatility (tendency to vaporize) specified in terms of boiling points, which became the primary focuses for gasoline producers. These early eastern crude oil gasolines had relatively high Baumé test results (65 to 80 degrees Baumé) and were called Pennsylvania "High-Test" or simply "High-Test" gasolines. These would often be used in aircraft engines. By 1910, increased automobile production and the resultant increase in gasoline consumption produced a greater demand for gasoline. Also, the growing electrification of lighting produced a drop in kerosene demand, creating a supply problem. It appeared that the burgeoning oil industry would be trapped into over-producing kerosene and under-producing gasoline since simple distillation could not alter the ratio of the two products from any given crude. The solution appeared in 1911 when the development of the
Burton processThe Burton process is a thermal cracking process invented by William Merriam Burton and Robert E. Humphreys, each of whom held a PhD in chemistry from Johns Hopkins University. The process they developed is often called the Burton process. More fa ...
allowed thermal cracking of crude oils, which increased the percent yield of gasoline from the heavier hydrocarbons. This was combined with the expansion of foreign markets for the export of surplus kerosene which domestic markets no longer needed. These new thermally "cracked" gasolines were believed to have no harmful effects and would be added to straight-run gasolines. There also was the practice of mixing heavy and light distillates to achieve the desired Baumé reading and collectively these were called "blended" gasolines.Matthew Van Winkle, ''Aviation Gasoline Manufacture'', McGraw-Hill, 1944, pp. 1–4. Gradually, volatility gained favor over the Baumé test, though both would continue to be used in combination to specify a gasoline. As late as June 1917,
Standard Oil Standard Oil Co. was an American -producing, transporting, refining, and marketing . Established in 1870 by and as a in , it was the largest in the world at its height. Its history as one of the world's first and largest s ended in 1911, wh ...

Standard Oil
(the largest refiner of crude oil in the United States at the time) stated that the most important property of a gasoline was its volatility. It is estimated that the rating equivalent of these straight-run gasolines varied from 40 to 60 octane and that the "High-Test", sometimes referred to as "fighting grade", probably averaged 50 to 65 octane.


World War I

Prior to the
American entry into World War I American(s) may refer to: * American, something of, from, or related to the United States of America, commonly known as the United States ** Americans, citizens and nationals of the United States of America ** American ancestry, people who self-i ...
, the European Allies used fuels derived from crude oils from Borneo, Java, and Sumatra, which gave satisfactory performance in their military aircraft. When the United States entered the war in April 1917, the U.S. became the principal supplier of aviation gasoline to the Allies and a decrease in engine performance was noted. Soon it was realized that motor vehicle fuels were unsatisfactory for aviation, and after the loss of several combat aircraft, attention turned to the quality of the gasolines being used. Later flight tests conducted in 1937 showed that an octane reduction of 13 points (from 100 down to 87 octane) decreased engine performance by 20 percent and increased take-off distance by 45 percent. If abnormal combustion were to occur, the engine could lose enough power to make getting airborne impossible and a take-off roll became a threat to the pilot and aircraft. On 2 August 1917, the
United States Bureau of Mines For most of the 20th century, the United States Bureau of Mines (USBM) was the primary Federal government of the United States, United States government agency conducting scientific research and disseminating information on the extraction, process ...
arranged to study fuels for aircraft in cooperation with the Aviation Section of the
U.S. Army Signal Corps ) , colors = Orange and white , colors_label = Corps colors , march = , mascot = , equipment = , equipment_label = , ...
and a general survey concluded that no reliable data existed for the proper fuels for aircraft. As a result, flight tests began at Langley, McCook and Wright fields to determine how different gasolines performed under different conditions. These tests showed that in certain aircraft, motor vehicle gasolines performed as well as "High-Test" but in other types resulted in hot-running engines. It was also found that gasolines from aromatic and naphthenic base crude oils from California, South Texas, and Venezuela resulted in smooth-running engines. These tests resulted in the first government specifications for motor gasolines (aviation gasolines used the same specifications as motor gasolines) in late 1917.


United States, 1918–1929

Engine designers knew that, according to the
Otto cycle An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition engine, spark ignition piston engine. It is the thermodynamic cycle most commonly found in automobile engines. The Otto cycle is a d ...

Otto cycle
, power and efficiency increased with compression ratio, but experience with early gasolines during World War I showed that higher compression ratios increased the risk of abnormal combustion, producing lower power, lower efficiency, hot-running engines, and potentially severe engine damage. To compensate for these poor fuels, early engines used low compression ratios, which required relatively large, heavy engines with limited power and efficiency. The
Wright brothers
Wright brothers
' first gasoline engine used a compression ratio as low as 4.7-to-1, developed only from , and weighed . This was a major concern for aircraft designers and the needs of the aviation industry provoked the search for fuels that could be used in higher-compression engines. Between 1917 and 1919, the amount of thermally cracked gasoline utilized almost doubled. Also, the use of
natural gasoline Natural gasoline is a liquid hydrocarbon In organic chemistry, a hydrocarbon is an organic compound , CH4; is among the simplest organic compounds. In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydro ...
increased greatly. During this period, many U.S. states established specifications for motor gasoline but none of these agreed and they were unsatisfactory from one standpoint or another. Larger oil refiners began to specify unsaturated material percentage (thermally cracked products caused gumming in both use and storage while unsaturated hydrocarbons are more reactive and tend to combine with impurities leading to gumming). In 1922, the U.S. government published the first specifications for aviation gasolines (two grades were designated as "Fighting" and "Domestic" and were governed by boiling points, color, sulfur content, and a gum formation test) along with one "Motor" grade for automobiles. The gum test essentially eliminated thermally cracked gasoline from aviation usage and thus aviation gasolines reverted to fractionating straight-run naphthas or blending straight-run and highly treated thermally cracked naphthas. This situation persisted until 1929. The automobile industry reacted to the increase in thermally cracked gasoline with alarm. Thermal cracking produced large amounts of both
mono- Numeral or number prefixes are prefix A prefix is an affix which is placed before the Word stem, stem of a word. Adding it to the beginning of one word changes it into another word. For example, when the prefix ''un-'' is added to the word ''ha ...

mono-
and diolefins (unsaturated hydrocarbons), which increased the risk of gumming. Also, the volatility was decreasing to the point that fuel did not vaporize and was sticking to
spark plug A spark plug (sometimes, in British English British English (BrE) is the standard dialect A standard language (also standard variety, standard dialect, and standard) is a language variety that has undergone substantial codification of ...

spark plug
s and fouling them, creating hard starting and rough running in winter and sticking to cylinder walls, bypassing the pistons and rings, and going into the crankcase oil. One journal stated, "...on a multi-cylinder engine in a high-priced car we are diluting the oil in the crankcase as much as 40 percent in a 200-mile run, as the analysis of the oil in the oil-pan shows." Being very unhappy with the consequent reduction in overall gasoline quality, automobile manufacturers suggested imposing a quality standard on the oil suppliers. The oil industry in turn accused the automakers of not doing enough to improve vehicle economy, and the dispute became known within the two industries as "The Fuel Problem". Animosity grew between the industries, each accusing the other of not doing anything to resolve matters, and their relationship deteriorated. The situation was only resolved when the
American Petroleum Institute The American Petroleum Institute (API) is the largest U.S. trade association A trade association, also known as an industry trade group, business association, sector association or industry body, is an organization founded and funded by business ...
(API) initiated a conference to address "The Fuel Problem" and a Cooperative Fuel Research (CFR) Committee was established in 1920, to oversee joint investigative programs and solutions. Apart from representatives of the two industries, the
Society of Automotive Engineers SAE International, formerly named the Society of Automotive Engineers, is a United States-based, globally active professional association A professional association (also called a professional body, professional organization, or professional ...
(SAE) also played an instrumental role, with the U.S. Bureau of Standards being chosen as an impartial research organization to carry out many of the studies. Initially, all the programs were related to volatility and fuel consumption, ease of starting, crankcase oil dilution, and acceleration.


Leaded gasoline controversy, 1924–1925

With the increased use of thermally cracked gasolines came an increased concern regarding its effects on abnormal combustion, and this led to research for antiknock additives. In the late 1910s, researchers such as A.H. Gibson,
Harry Ricardo Sir Harry Ralph Ricardo (26 January 1885 – 18 May 1974) was an English engineer who was one of the foremost engine An engine or motor is a machine designed to convert one form of energy into mechanical energy. Heat engines convert heat ...
, Thomas Midgley Jr., and Thomas Boyd began to investigate abnormal combustion. Beginning in 1916,
Charles F. Kettering Charles Franklin Kettering (August 29, 1876 – November 25, 1958) sometimes known as Charles "Boss" Kettering was an American inventor, engineer, businessman, and the holder of 186 patents. For the list of patents issued to Kettering, see, Lesl ...

Charles F. Kettering
of General Motors began investigating additives based on two paths, the "high percentage" solution (where large quantities of
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ (anatomy), ...

ethanol
were added) and the "low percentage" solution (where only 2–4 grams per gallon were needed). The "low percentage" solution ultimately led to the discovery of
tetraethyllead Tetraethyllead (commonly styled tetraethyl lead), abbreviated TEL, is an organolead compoundOrganolead compounds are chemical compounds containing a chemical bond between carbon and lead. Organolead chemistry is the corresponding science. The fi ...
(TEL) in December 1921, a product of the research of Midgley and Boyd and the defining component of leaded gasoline. This innovation started a cycle of improvements in
fuel efficiency Fuel efficiency is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical energy, chemical potential energy contained in a carrier (fuel) into kinetic energy or Mechanical work, work. Overall fuel e ...
that coincided with the large-scale development of oil refining to provide more products in the boiling range of gasoline. Ethanol could not be patented but TEL could, so Kettering secured a patent for TEL and began promoting it instead of other options. The dangers of compounds containing
lead Lead is a chemical element with the Symbol (chemistry), symbol Pb (from the Latin ) and atomic number 82. It is a heavy metals, heavy metal that is density, denser than most common materials. Lead is Mohs scale of mineral hardness#Intermediate h ...

lead
were well-established by then and Kettering was directly warned by Robert Wilson of MIT, Reid Hunt of Harvard, Yandell Henderson of Yale, and Erik Krause of the University of Potsdam in Germany about its use. Krause had worked on tetraethyllead for many years and called it "a creeping and malicious poison" that had killed a member of his dissertation committee. On 27 October 1924, newspaper articles around the nation told of the workers at the Standard Oil refinery near
Elizabeth Elizabeth or Elisabeth may refer to: People * Elizabeth (given name), a female given name (including people with that name) * Elizabeth (biblical figure), mother of John the Baptist Ships * HMS Elizabeth, HMS ''Elizabeth'', several ships * Elisab ...
, New Jersey who were producing TEL and were suffering from
lead poisoning Lead poisoning, also known as plumbism and saturnism, is a type of metal poisoning Metal toxicity or metal poisoning is the toxic effect of certain metals in certain forms and doses on life. Some metals are toxic when they form poisonous solubl ...
. By 30 October, the death toll had reached five. In November, the New Jersey Labor Commission closed the Bayway refinery and a grand jury investigation was started which had resulted in no charges by February 1925. Leaded gasoline sales were banned in New York City, Philadelphia, and New Jersey.
General Motors General Motors Company (GM) is an American multinational Multinational may refer to: * Multinational corporation, a corporate organization operating in multiple countries * Multinational force, a military body from multiple countries * Multinat ...

General Motors
,
DuPont DuPont de Nemours, Inc., commonly known as DuPont, is an American company formed by the merger of Dow Chemical The Dow Chemical Company (TDCC) is an American multinational chemical corporation headquartered in Midland, Michigan, United Sta ...

DuPont
, and Standard Oil, who were partners in
Ethyl Corporation Sign advertising Ethyl additive, on an antique gasoline pump in the USA Ethyl Corporation is a fuel additive company headquartered in Richmond, Virginia, in the United States. The company is a distributor of fuel additives. Among other products, E ...
, the company created to produce TEL, began to argue that there were no alternatives to leaded gasoline that would maintain fuel efficiency and still prevent engine knocking. After several industry-funded flawed studies reported that TEL-treated gasoline was not a public health issue, the controversy subsided.


United States, 1930–1941

In the five years prior to 1929, a great amount of experimentation was conducted on different testing methods for determining fuel resistance to abnormal combustion. It appeared engine knocking was dependent on a wide variety of parameters including compression, ignition timing, cylinder temperature, air-cooled or water-cooled engines, chamber shapes, intake temperatures, lean or rich mixtures, and others. This led to a confusing variety of test engines that gave conflicting results, and no standard rating scale existed. By 1929, it was recognized by most aviation gasoline manufacturers and users that some kind of antiknock rating must be included in government specifications. In 1929, the
octane rating An octane rating, or octane number, is a standard measure of a fuel A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy Thermal radiation in visible light can be seen on this ho ...
scale was adopted, and in 1930, the first octane specification for aviation fuels was established. In the same year, the U.S. Army Air Force specified fuels rated at 87 octane for its aircraft as a result of studies it had conducted. During this period, research showed that hydrocarbon structure was extremely important to the antiknocking properties of fuel. Straight-chain
paraffins , the simplest alkane In organic chemistry, an alkane, or paraffin (a historical trivial name that also has Paraffin (disambiguation), other meanings), is an Open-chain compound, acyclic Saturated and unsaturated compounds, saturated hydrocarbon. ...
in the boiling range of gasoline had low antiknock qualities while ring-shaped molecules such as
aromatic hydrocarbon Aromatic compounds are those chemical compounds (most commonly organic compound, organic) that contain one or more ring (chemistry), rings with pi electrons delocalized all the way around them. In contrast to compounds that exhibit aromaticity, al ...
s (for example
benzene Benzene is an organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ (anatomy), organ Chemistry * Organic matter, matter that has come from a once-living organi ...

benzene
) had higher resistance to knocking. This development led to the search for processes that would produce more of these compounds from crude oils than achieved under straight distillation or thermal cracking. Research by the major refiners led to the development of processes involving isomerization of cheap and abundant
butane Butane () or ''n''-butane is an alkane with the formula C4H10. Butane is a gas at room temperature and atmospheric pressure. Butane is a highly flammable, colorless, easily liquefy, liquefied gas that quickly vaporizes at room temperature. The n ...

butane
to
isobutane Isobutane, also known as ''i''-butane, 2-methylpropane or methylpropane, is a chemical compound A chemical compound is a chemical substance A chemical substance is a form of matter In classical physics and general chemistry, matter is a ...

isobutane
, and
alkylation Alkylation is the transfer of an alkyl In organic chemistry, an alkyl substituent is an alkane missing one hydrogen. The term alkyl is intentionally unspecific to include many possible substitutions. An acyclic alkyl has the general formula of C ...
to join isobutane and
butyleneButene, also known as butylene, is an alkene , the simplest alkene. In chemistry Chemistry is the scientific discipline involved with Chemical element, elements and chemical compound, compounds composed of atoms, molecules and ions: their ...
s to form isomers of
octane Octane is a hydrocarbon In , a hydrocarbon is an consisting entirely of and . Hydrocarbons are examples of s. Hydrocarbons are generally colourless and hydrophobic with only weak odours. Because of their diverse molecular structures, it is di ...

octane
such as "
isooctane 2,2,4-Trimethylpentane, also known as isooctane or iso-octane, is an organic compound with the formula (CH3)3CCH2CH(CH3)2. It is one of several isomers of octane (C8H18). This particular isomer is the standard 100 point on the octane rating An ...

isooctane
", which became an important component in aviation fuel blending. To further complicate the situation, as engine performance increased, the altitude that aircraft could reach also increased, which resulted in concerns about the fuel freezing. The average temperature decrease is per increase in altitude, and at , the temperature can approach . Additives like benzene, with a freezing point of , would freeze in the gasoline and plug fuel lines. Substituted aromatics such as
toluene Toluene (), also known as toluol (), is an aromatic hydrocarbon. It is a colorless, Water (molecule), water-insoluble liquid with the smell associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group ( ...

toluene
,
xylene Xylene (from ''xylon'', "wood"), xylol or dimethylbenzene is any one of three s of dimethylbenzene, or a combination thereof. With the formula (CH3)2C6H4, in each of the three compounds two hydrogen atoms in the ring are substituted by two s. ...
, and
cumene Cumene (isopropylbenzene) is an organic compound that is based on an aromatic hydrocarbon with an aliphatic substitution. It is a constituent of crude oil and refined fuels. It is a flammable colorless liquid that has a boiling point of 152&nbs ...

cumene
, combined with limited benzene, solved the problem. By 1935, there were seven different aviation grades based on octane rating, two Army grades, four Navy grades, and three commercial grades including the introduction of 100-octane aviation gasoline. By 1937, the Army established 100-octane as the standard fuel for combat aircraft, and to add to the confusion, the government now recognized 14 different grades, in addition to 11 others in foreign countries. With some companies required to stock 14 grades of aviation fuel, none of which could be interchanged, the effect on the refiners was negative. The refining industry could not concentrate on large capacity conversion processes for so many different grades and a solution had to be found. By 1941, principally through the efforts of the Cooperative Fuel Research Committee, the number of grades for aviation fuels was reduced to three: 73, 91, and 100 octane. The development of 100-octane aviation gasoline on an economic scale was due in part to
Jimmy Doolittle James Harold Doolittle (December 14, 1896 – September 27, 1993) was an American military general and aviation pioneer. He made early coast-to-coast flights, won many flying races, and helped develop instrument flying. Doolittle studied as an ...
, who had become Aviation Manager of Shell Oil Company. He convinced Shell to invest in refining capacity to produce 100-octane on a scale that nobody needed since no aircraft existed that required a fuel that nobody made. Some fellow employees would call his effort "Doolittle's million-dollar blunder" but time would prove Doolittle correct. Before this, the Army had considered 100-octane tests using pure octane but at $25 a gallon, the price prevented this from happening. In 1929 Stanavo Specification Board, Inc. was organized by the Standard Oil companies of California, Indiana, and New Jersey to improve aviation fuels and oils and by 1935 had placed their first 100 octane fuel on the market, Stanavo Ethyl Gasoline 100. It was used by the Army, engine manufacturers and airlines for testing and for air racing and record flights. By 1936 tests at Wright Field using the new, cheaper alternatives to pure octane proved the value of 100 octane fuel, and both Shell and Standard Oil would win the contract to supply test quantities for the Army. By 1938 the price was down to 17.5 cents a gallon, only 2.5 cents more than 87 octane fuel. By the end of WW II the price would be down to 16 cents a gallon. In 1937,
Eugene Houdry Eugène Jules Houdry ( Domont, France France (), officially the French Republic (french: link=no, République française), is a country primarily located in Western Europe, consisting of metropolitan France and Overseas France, several ove ...
developed the Houdry process of
catalytic cracking Fluid catalytic cracking (FCC) is one of the most important conversion processes used in petroleum refineries. It is widely used to convert the high-boiling point, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valu ...
, which produced a high-octane base stock of gasoline which was superior to the thermally cracked product since it did not contain the high concentration of olefins. In 1940, there were only 14 Houdry units in operation in the U.S.; by 1943, this had increased to 77, either of the Houdry process or of the Thermofor Catalytic or Fluid Catalyst type. The search for fuels with octane ratings above 100 led to the extension of the scale by comparing power output. A fuel designated grade 130 would produce 130 percent as much power in an engine as it would running on pure iso-octane. During WW II, fuels above 100-octane were given two ratings, a rich and a lean mixture, and these would be called 'performance numbers' (PN). 100-octane aviation gasoline would be referred to as 130/100 grade.


World War II


Germany

Oil and its byproducts, especially high-octane aviation gasoline, would prove to be a driving concern for how Germany conducted the war. As a result of the lessons of World War I, Germany had stockpiled oil and gasoline for its
blitzkrieg Blitzkrieg (, from ''Blitz'' lightning"+ ''Krieg'' war" is a method of warfare where the attacker spearheads an offensive using a rapid overwhelming force concentration Force concentration is the practice of concentrating a military forc ...

blitzkrieg
offensive and had annexed Austria, adding 18,000 barrels per day of oil production, but this was not sufficient to sustain the planned conquest of Europe. Because captured supplies and oil fields would be necessary to fuel the campaign, the German high command created a special squad of oil-field experts drawn from the ranks of domestic oil industries. They were sent in to put out oil-field fires and get production going again as soon as possible. But capturing oil fields remained an obstacle throughout the war. During the
Invasion of Poland The invasion of Poland (1 September – 6 October 1939), also known as the September campaign ( pl, Kampania wrześniowa), 1939 defensive war ( pl, Wojna obronna 1939 roku) and Poland campaign (german: Überfall auf Polen, Polenfeldzug), was an ...
, German estimates of gasoline consumption turned out to be vastly too low.
Heinz Guderian Heinz Wilhelm Guderian (; 17 June 1888 – 14 May 1954) was a German general during World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a that lasted from 1939 to 1945. It involved —in ...

Heinz Guderian
and his
Panzer division A panzer division was one of the armored (tank) divisions in the Wehrmacht The ''Wehrmacht'' (, ) was the unified armed forces A military, also known collectively as armed forces, is a heavily armed, highly organized force primari ...
s consumed nearly of gasoline on the drive to
Vienna Vienna ( ; german: Wien ; bar, Wean, label=Bavarian language, Austro-Bavarian ) is the Capital city, national capital, largest city, and one of States of Austria, nine states of Austria. Vienna is Austria's List of cities and towns in Austria, mos ...

Vienna
. When they were engaged in combat across open country, gasoline consumption almost doubled. On the second day of battle, a unit of the XIX Corps was forced to halt when it ran out of gasoline. One of the major objectives of the Polish invasion was their oil fields but the Soviets invaded and captured 70 percent of the Polish production before the Germans could reach it. Through the German-Soviet Commercial Agreement (1940), Stalin agreed in vague terms to supply Germany with additional oil equal to that produced by now Soviet-occupied Polish oil fields at Drohobych and Boryslav in exchange for hard coal and steel tubing. Even after the Nazis conquered the vast territories of Europe, this did not help the gasoline shortage. This area had never been self-sufficient in oil before the war. In 1938, the area that would become Nazi-occupied produced 575,000 barrels per day. In 1940, total production under German control amounted to only —a shortfall of 59 percent. By the spring of 1941 and the depletion of German gasoline reserves, Adolf Hitler saw the invasion of Russia to seize the Polish oil fields and the Russian oil in the Caucasus as the solution to the German gasoline shortage. As early as July 1941, following the 22 June start of Operation Barbarossa, certain Luftwaffe squadrons were forced to curtail ground support missions due to shortages of aviation gasoline. On 9 October, the German quartermaster general estimated that army vehicles were short of gasoline requirements. Virtually all of Germany's aviation gasoline came from synthetic oil plants that hydrogenated coals and coal tars. These processes had been developed during the 1930s as an effort to achieve fuel independence. There were two grades of aviation gasoline produced in volume in Germany, the B-4 or blue grade and the C-3 or green grade, which accounted for about two-thirds of all production. B-4 was equivalent to 89-octane and the C-3 was roughly equal to the U.S. 100-octane, though lean mixture was rated around 95-octane and was poorer than the U.S. version. Maximum output achieved in 1943 reached 52,200 barrels a day before the Allies decided to target the synthetic fuel plants. Through captured enemy aircraft and analysis of the gasoline found in them, both the Allies and the Axis powers were aware of the quality of the aviation gasoline being produced and this prompted an octane race to achieve the advantage in aircraft performance. Later in the war, the C-3 grade was improved to where it was equivalent to the U.S. 150 grade (rich mixture rating).


Japan

Japan, like Germany, had almost no domestic oil supply and by the late 1930s, produced only 7% of its own oil while importing the rest – 80% from the United States. As Japanese aggression grew in China (USS Panay incident) and news reached the American public of Japanese bombing of civilian centers, especially the bombing of Chungking, public opinion began to support a U.S. embargo. A Gallup poll in June 1939 found that 72 percent of the American public supported an embargo on war materials to Japan. This increased tensions between the U.S. and Japan, and it led to the U.S. placing restrictions on exports. In July 1940, the U.S. issued a proclamation that banned the export of 87 octane or higher aviation gasoline to Japan. This ban did not hinder the Japanese as their aircraft could operate with fuels below 87 octane and if needed they could add Tetraethyllead, TEL to increase the octane. As it turned out, Japan bought 550 percent more sub-87 octane aviation gasoline in the five months after the July 1940 ban on higher octane sales. The possibility of a complete ban of gasoline from America created friction in the Japanese government as to what action to take to secure more supplies from the Dutch East Indies and demanded greater oil exports from the exiled Dutch government after the Battle of the Netherlands. This action prompted the U.S. to move its Pacific fleet from Southern California to Pearl Harbor to help stiffen British resolve to stay in Indochina. With the Japanese invasion of French Indochina in September 1940, came great concerns about the possible Japanese invasion of the Dutch Indies to secure their oil. After the U.S. banned all exports of steel and iron scrap, the next day Japan signed the Tripartite Pact and this led Washington to fear that a complete U.S. oil embargo would prompt the Japanese to invade the Dutch East Indies. On 16 June 1941 Harold Ickes, who was appointed Petroleum Coordinator for National Defense, stopped a shipment of oil from Philadelphia to Japan in light of the oil shortage on the East coast due to increased exports to Allies. He also telegrammed all oil suppliers on the East coast not to ship any oil to Japan without his permission. President Roosevelt countermanded Ickes' orders telling Ickes that the "... I simply have not got enough Navy to go around and every little episode in the Pacific means fewer ships in the Atlantic". On 25 July 1941, the U.S. froze all Japanese financial assets and licenses would be required for each use of the frozen funds including oil purchases that could produce aviation gasoline. On 28 July 1941, Japan invaded southern Indochina. The debate inside the Japanese government as to its oil and gasoline situation was leading to invasion of the Dutch East Indies but this would mean war with the U.S., whose Pacific fleet was a threat to their flank. This situation led to the decision to attack the U.S. fleet at Pearl Harbor before proceeding with the Dutch East Indies invasion. On 7 December 1941, Japan attacked Pearl Harbor, and the next day the Netherlands declared war on Japan, which initiated the Dutch East Indies campaign. But the Japanese missed a golden opportunity at Pearl Harbor. "All of the oil for the fleet was in surface tanks at the time of Pearl Harbor," Admiral Chester Nimitz, who became Commander in Chief of the Pacific Fleet, was later to say. "We had about of oil out there and all of it was vulnerable to .50 caliber bullets. Had the Japanese destroyed the oil," he added, "it would have prolonged the war another two years."


United States

Early in 1944, William Boyd, president of the American Petroleum Institute and chairman of the Petroleum Industry War Council said: "The Allies may have floated to victory on a wave of oil in World War I, but in this infinitely greater World War II, we are flying to victory on the wings of petroleum". In December 1941 the United States had 385,000 oil wells producing 1.4 billion barrels of oil a year and 100-octane aviation gasoline capacity was at 40,000 barrels a day. By 1944, the U.S. was producing over 1.5 billion barrels a year (67 percent of world production) and the petroleum industry had built 122 new plants for the production of 100-octane aviation gasoline and capacity was over 400,000 barrels a day – an increase of more than ten-fold. It was estimated that the U.S. was producing enough 100-octane aviation gasoline to permit the dropping of of bombs on the enemy every day of the year. The record of gasoline consumption by the Army prior to June 1943 was uncoordinated as each supply service of the Army purchased its own petroleum products and no centralized system of control nor records existed. On 1 June 1943 the Army created the Fuels and Lubricants Division of the Quartermaster Corps, and from their records they tabulated that the Army (excluding fuels and lubricants for aircraft) purchased over 2.4 billion gallons of gasoline for delivery to overseas theaters between 1 June 1943, through August 1945. That figure does not include gasoline used by the Army inside the United States. Motor fuel production had declined from 701,000,000 barrels in 1941 down to 608,000,000 barrels in 1943. World War II marked the first time in U.S. history that gasoline was rationed and the government imposed price controls to prevent inflation. Gasoline consumption per automobile declined from 755 gallons per year in 1941 down to 540 gallons in 1943, with the goal of preserving rubber for tires since the Japanese had cut the U.S. off from over 90 percent of its rubber supply which had come from the Dutch East Indies and the U.S. synthetic rubber industry was in its infancy. Average gasoline prices went from a record low of $0.1275 per gallon ($0.1841 with taxes) in 1940 to $0.1448 per gallon ($0.2050 with taxes) in 1945. Even with the world's largest aviation gasoline production, the U.S. military still found that more was needed. Throughout the duration of the war, aviation gasoline supply was always behind requirements and this impacted training and operations. The reason for this shortage developed before the war even began. The free market did not support the expense of producing 100-octane aviation fuel in large volume, especially during the Great Depression. Iso-octane in the early development stage cost $30 a gallon and even by 1934, it was still $2 a gallon compared to $0.18 for motor gasoline when the Army decided to experiment with 100-octane for its combat aircraft. Though only 3 percent of U.S. combat aircraft in 1935 could take full advantage of the higher octane due to low compression ratios, the Army saw that the need for increasing performance warranted the expense and purchased 100,000 gallons. By 1937 the Army established 100-octane as the standard fuel for combat aircraft and by 1939 production was only 20,000 barrels a day. In effect, the U.S. military was the only market for 100-octane aviation gasoline and as war broke out in Europe this created a supply problem that persisted throughout the duration. With the war in Europe a reality in 1939, all predictions of 100-octane consumption were outrunning all possible production. Neither the Army nor the Navy could contract more than six months in advance for fuel and they could not supply the funds for plant expansion. Without a long-term guaranteed market, the petroleum industry would not risk its capital to expand production for a product that only the government would buy. The solution to the expansion of storage, transportation, finances, and production was the creation of the Defense Supplies Corporation on 19 September 1940. The Defense Supplies Corporation would buy, transport and store all aviation gasoline for the Army and Navy at cost plus a carrying fee. When the Allied breakout after D-Day found their armies stretching their supply lines to a dangerous point, the makeshift solution was the Red Ball Express. But even this soon was inadequate. The trucks in the convoys had to drive longer distances as the armies advanced and they were consuming a greater percentage of the same gasoline they were trying to deliver. In 1944, General George Patton's Third Army finally stalled just short of the German border after running out of gasoline. The general was so upset at the arrival of a truckload of rations instead of gasoline he was reported to have shouted: "Hell, they send us food, when they know we can fight without food but not without oil." The solution had to wait for the repairing of the railroad lines and bridges so that the more efficient trains could replace the gasoline-consuming truck convoys.


United States, 1946 to present

The development of jet engines burning kerosene-based fuels during WW II for aircraft produced a superior performing propulsion system than internal combustion engines could offer and the U.S. military forces gradually replaced their piston combat aircraft with jet powered planes. This development would essentially remove the military need for ever increasing octane fuels and eliminated government support for the refining industry to pursue the research and production of such exotic and expensive fuels. Commercial aviation was slower to adapt to jet propulsion and until 1958, when the Boeing 707 first entered commercial service, piston powered airliners still relied on aviation gasoline. But commercial aviation had greater economic concerns than the maximum performance that the military could afford. As octane numbers increased so did the cost of gasoline but the incremental increase in efficiency becomes less as compression ratio goes up. This reality set a practical limit to how high compression ratios could increase relative to how expensive the gasoline would become. Last produced in 1955, the Pratt & Whitney R-4360 Wasp Major was using 115/145 Aviation gasoline and producing 1 horsepower per cubic inch at 6.7 compression ratio (turbo-supercharging would increase this) and 1 pound of engine weight to produce 1.1 horsepower. This compares to the Wright Brothers engine needing almost 17 pounds of engine weight to produce 1 horsepower. The US automobile industry after WW II could not take advantage of the high octane fuels then available. Automobile compression ratios increased from an average of 5.3-to-1 in 1931 to just 6.7-to-1 in 1946. The average octane number of regular-grade motor gasoline increased from 58 to 70 during the same time. Military aircraft were using expensive turbo-supercharged engines that cost at least 10 times as much per horsepower as automobile engines and had to be overhauled every 700 to 1,000 hours. The automobile market could not support such expensive engines. It would not be until 1957 that the first US automobile manufacturer could mass-produce an engine that would produce one horsepower per cubic inch, the Chevrolet 283 hp/283 cubic inch V-8 engine option in the Corvette. At $485 this was an expensive option that few consumers could afford and would only appeal to the performance-oriented consumer market willing to pay for the premium fuel required. This engine had an advertised compression ratio of 10.5-to-1 and the 1958 AMA Specifications stated that the octane requirement was 96-100 RON. At (1959 with aluminum intake), it took of engine weight to make . In the 1950s oil refineries started to focus on high octane fuels, and then detergents were added to gasoline to clean the jets in carburetors. The 1970s witnessed greater attention to the environmental consequences of burning gasoline. These considerations led to the phasing out of TEL and its replacement by other antiknock compounds. Subsequently, low-sulfur gasoline was introduced, in part to preserve the catalysts in modern exhaust systems.


Chemical analysis and production

Commercial gasoline is a mixture of a large number of different hydrocarbons. Gasoline is produced to meet a host of engine performance specifications and many different compositions are possible. Hence, the exact chemical composition of gasoline is undefined. The performance specification also varies with season, requiring more volatile blends (due to added butane) during winter, in order to be able to start a cold engine. At the refinery, the composition varies according to the crude oils from which it is produced, the type of processing units present at the refinery, how those units are operated, and which hydrocarbon streams (blendstocks) the refinery opts to use when blending the final product. Gasoline is produced in oil refinery, oil refineries. Roughly of gasoline is derived from a barrel of crude oil. Material separated from crude oil via distillation, called virgin or straight-run gasoline, does not meet specifications for modern engines (particularly the
octane rating An octane rating, or octane number, is a standard measure of a fuel A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy Thermal radiation in visible light can be seen on this ho ...
; see below), but can be pooled to the gasoline blend. The bulk of a typical gasoline consists of a homogeneous mixture of small, relatively lightweight
hydrocarbon In , a hydrocarbon is an consisting entirely of and . Hydrocarbons are examples of s. Hydrocarbons are generally colourless and hydrophobic with only weak odours. Because of their diverse molecular structures, it is difficult to generalize furth ...
s with between 4 and 12 carbon atoms per molecule (commonly referred to as C4–C12).Werner Dabelstein, Arno Reglitzky, Andrea Schütze and Klaus Reders "Automotive Fuels" in ''Ullmann's Encyclopedia of Industrial Chemistry'' 2007, Wiley-VCH, Weinheim. It is a mixture of paraffins (alkanes), olefins (alkenes), and cycloalkanes (naphthenes). The usage of the terms ''paraffin'' and ''olefin'' in place of the standard chemical nomenclature ''alkane'' and ''alkene'', respectively, is particular to the oil industry. The actual ratio of molecules in any gasoline depends upon: * the oil refinery that makes the gasoline, as not all refineries have the same set of processing units; * the crude oil feed used by the refinery; * the grade of gasoline (in particular, the octane rating). The various refinery streams blended to make gasoline have different characteristics. Some important streams include the following: * Straight-run gasoline, commonly referred to as ''naphtha'', is distilled directly from crude oil. Once the leading source of fuel, its low octane rating required lead additives. It is low in aromatics (depending on the grade of the crude oil stream) and contains some cycloalkanes (naphthenes) and no olefins (alkenes). Between 0 and 20 percent of this stream is pooled into the finished gasoline because the quantity of this fraction in the crude is less than fuel demand and the fraction's Octane rating#Research Octane Number (RON), Research Octane Number (RON) is too low. The chemical properties (namely RON and Reid vapor pressure (RVP)) of the straight-run gasoline can be improved through Catalytic reforming, reforming and isomerisation, isomerization. However, before feeding those units, the naphtha needs to be split into light and heavy naphtha. Straight-run gasoline can also be used as a feedstock for steam-crackers to produce olefins. * Reformate, produced in a catalytic reformer, has a high octane rating with high aromatic content and relatively low olefin content. Most of the
benzene Benzene is an organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ (anatomy), organ Chemistry * Organic matter, matter that has come from a once-living organi ...

benzene
,
toluene Toluene (), also known as toluol (), is an aromatic hydrocarbon. It is a colorless, Water (molecule), water-insoluble liquid with the smell associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group ( ...

toluene
, and
xylene Xylene (from ''xylon'', "wood"), xylol or dimethylbenzene is any one of three s of dimethylbenzene, or a combination thereof. With the formula (CH3)2C6H4, in each of the three compounds two hydrogen atoms in the ring are substituted by two s. ...
(the so-called BTX (chemistry), BTX hydrocarbons) are more valuable as chemical feedstocks and are thus removed to some extent. * Catalytic cracked gasoline, or catalytic cracked petroleum naphtha, naphtha, produced with a Fluid catalytic cracking, catalytic cracker, has a moderate octane rating, high olefin content, and moderate aromatic content. * Hydrocrackate (heavy, mid, and light), produced with a hydrocracker, has a medium to low octane rating and moderate aromatic levels. * Alkylate is produced in an alkylation unit, using
isobutane Isobutane, also known as ''i''-butane, 2-methylpropane or methylpropane, is a chemical compound A chemical compound is a chemical substance A chemical substance is a form of matter In classical physics and general chemistry, matter is a ...

isobutane
and olefins as feedstocks. Finished alkylate contains no aromatics or olefins and has a high MON (Motor octane number, Motor Octane Number). * Isomerate is obtained by isomerizing low-octane straight-run gasoline into iso-paraffins (non-chain alkanes, such as
isooctane 2,2,4-Trimethylpentane, also known as isooctane or iso-octane, is an organic compound with the formula (CH3)3CCH2CH(CH3)2. It is one of several isomers of octane (C8H18). This particular isomer is the standard 100 point on the octane rating An ...

isooctane
). Isomerate has a medium RON and MON, but no aromatics or olefins. * Butane is usually blended in the gasoline pool, although the quantity of this stream is limited by the RVP specification. The terms above are the jargon used in the oil industry, and the terminology varies. Currently, many countries set limits on gasoline aromatics in general, benzene in particular, and olefin (alkene) content. Such regulations have led to an increasing preference for alkane isomers, such as isomerate or alkylate, as their octane rating is higher than n-alkanes. In the European Union, the benzene limit is set at 1% by volume for all grades of automotive gasoline. This is usually achieved by avoiding feeding C6, in particular cyclohexane, to the reformer unit, where it would be converted to benzene. Therefore, only (desulfurized) heavy virgin naphtha (HVN) is fed to the reformer unit Gasoline can also contain other
organic compound In chemistry Chemistry is the study of the properties and behavior of . It is a that covers the that make up matter to the composed of s, s and s: their composition, structure, properties, behavior and the changes they undergo during ...
s, such as organic ethers (deliberately added), plus small levels of contaminants, in particular organosulfur compounds (which are usually removed at the refinery).


Physical properties


Density

The
specific gravity Relative density, or specific gravity, is the ratio In mathematics, a ratio indicates how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemon ...
of gasoline ranges from 0.71 to 0.77, with higher densities having a greater volume fraction of aromatics. Finished marketable gasoline is traded (in Europe) with a standard reference of , and its price is escalated or de-escalated according to its actual density. Because of its low density, gasoline floats on water, and therefore water cannot generally be used to extinguish a gasoline fire unless applied in a fine mist.


Stability

Quality gasoline should be stable for six months if stored properly, but as gasoline is a mixture rather than a single compound, it will break down slowly over time due to the separation of the components. Gasoline stored for a year will most likely be able to be burned in an internal combustion engine without too much trouble. However, the effects of long-term storage will become more noticeable with each passing month until a time comes when the gasoline should be diluted with ever-increasing amounts of freshly made fuel so that the older gasoline may be used up. If left undiluted, improper operation will occur and this may include engine damage from misfiring or the lack of proper action of the fuel within a fuel injection system and from an onboard computer attempting to compensate (if applicable to the vehicle). Gasoline should ideally be stored in an airtight container (to prevent oxidation or water vapor mixing in with the gas) that can withstand the vapor pressure of the gasoline without venting (to prevent the loss of the more volatile fractions) at a stable cool temperature (to reduce the excess pressure from liquid expansion and to reduce the rate of any decomposition reactions). When gasoline is not stored correctly, gums and solids may result, which can corrode system components and accumulate on wet surfaces, resulting in a condition called "stale fuel". Gasoline containing ethanol is especially subject to absorbing atmospheric moisture, then forming gums, solids, or two phases (a hydrocarbon phase floating on top of a water-alcohol phase). The presence of these degradation products in the fuel tank or fuel lines plus a carburetor or fuel injection components makes it harder to start the engine or causes reduced engine performance. On resumption of regular engine use, the buildup may or may not be eventually cleaned out by the flow of fresh gasoline. The addition of a fuel stabilizer to gasoline can extend the life of fuel that is not or cannot be stored properly, though removal of all fuel from a fuel system is the only real solution to the problem of long-term storage of an engine or a machine or vehicle. Typical fuel stabilizers are proprietary mixtures containing mineral spirits, isopropyl alcohol, 1,2,4-trimethylbenzene or gasoline additive, other additives. Fuel stabilizers are commonly used for small engines, such as lawnmower and tractor engines, especially when their use is sporadic or seasonal (little to no use for one or more seasons of the year). Users have been advised to keep gasoline containers more than half full and properly capped to reduce air exposure, to avoid storage at high temperatures, to run an engine for ten minutes to circulate the stabilizer through all components prior to storage, and to run the engine at intervals to purge stale fuel from the carburetor. Gasoline stability requirements are set by the standard ASTM International, ASTM D4814. This standard describes the various characteristics and requirements of automotive fuels for use over a wide range of operating conditions in ground vehicles equipped with spark-ignition engines.


Combustion energy content

A gasoline-fueled internal combustion engine obtains energy from the combustion of gasoline's various hydrocarbons with oxygen from the ambient air, yielding carbon dioxide and water as exhaust. The combustion of octane, a representative species, performs the chemical reaction: 2 C8H18 + 25 O2 -> 16 CO2 + 18 H2O By weight, combustion of gasoline releases about or by volume , quoting the lower heating value. Gasoline blends differ, and therefore actual energy content varies according to the season and producer by up to 1.75% more or less than the average. On average, about 74 L (19.5 US gal; 16.3 imp gal) of gasoline are available from a barrel of crude oil (about 46% by volume), varying with the quality of the crude and the grade of the gasoline. The remainder is products ranging from tar to
naphtha Naphtha ( or ) is a flammable liquid hydrocarbon mixture. Mixtures labelled ''naphtha'' have been produced from natural gas condensate Natural-gas condensate, also called natural gas liquids, is a low-density mixture of hydrocarbon liquids th ...
. A high-octane-rated fuel, such as liquefied petroleum gas (LPG), has an overall lower power output at the typical 10:1
compression ratio The compression ratio is the ratio between the volume of the cylinder A cylinder (from ) has traditionally been a Solid geometry, three-dimensional solid, one of the most basic of curvilinear geometric shapes. Geometrically, it can be conside ...

compression ratio
of an engine design optimized for gasoline fuel. An engine engine tuning, tuned for Autogas, LPG fuel via higher compression ratios (typically 12:1) improves the power output. This is because higher-octane fuels allow for a higher compression ratio without knocking, resulting in a higher cylinder temperature, which improves Heat engine, efficiency. Also, increased mechanical efficiency is created by a higher compression ratio through the concomitant higher expansion ratio on the power stroke, which is by far the greater effect. The higher expansion ratio extracts more work from the high-pressure gas created by the combustion process. An Atkinson cycle engine uses the timing of the valve events to produce the benefits of a high expansion ratio without the disadvantages, chiefly detonation, of a high compression ratio. A high expansion ratio is also one of the two key reasons for the efficiency of diesel engines, along with the elimination of pumping losses due to throttling of the intake airflow. The lower energy content of LPG by liquid volume in comparison to gasoline is due mainly to its lower density. This lower density is a property of the lower molecular weight of propane (LPG's chief component) compared to gasoline's blend of various hydrocarbon compounds with heavier molecular weights than propane. Conversely, LPG's energy content by weight is higher than gasoline's due to a higher hydrogen-to-carbon ratio. Molecular weights of the species in the representative octane combustion are C8H18 114, O2 32, CO2 44, H2O 18; therefore 1 kg of fuel reacts with 3.51 kg of oxygen to produce 3.09 kg of carbon dioxide and 1.42 kg of water.


Octane rating

Spark-ignition engines are designed to burn gasoline in a controlled process called deflagration. However, the unburned mixture may autoignite by pressure and heat alone, rather than igniting from the
spark plug A spark plug (sometimes, in British English British English (BrE) is the standard dialect A standard language (also standard variety, standard dialect, and standard) is a language variety that has undergone substantial codification of ...

spark plug
at exactly the right time, causing a rapid pressure rise that can damage the engine. This is often referred to as
engine knocking Knocking (also knock, detonation, spark knock, pinging or pinking) in spark ignition internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine In thermodynamics Thermodynamics is a branch of phy ...
or end-gas knock. Knocking can be reduced by increasing the gasoline's resistance to autoignition temperature, autoignition, which is expressed by its octane rating. Octane rating is measured relative to a mixture of 2,2,4-Trimethylpentane, 2,2,4-trimethylpentane (an isomer of
octane Octane is a hydrocarbon In , a hydrocarbon is an consisting entirely of and . Hydrocarbons are examples of s. Hydrocarbons are generally colourless and hydrophobic with only weak odours. Because of their diverse molecular structures, it is di ...

octane
) and n-heptane. There are different conventions for expressing octane ratings, so the same physical fuel may have several different octane ratings based on the measure used. One of the best known is the research octane number (RON). The octane rating of typical commercially available gasoline varies by country. In Finland, Sweden, and Norway, 95 RON is the standard for regular unleaded gasoline and 98 RON is also available as a more expensive option. In the United Kingdom, over 95% of gasoline sold has 95 RON and is marketed as Unleaded or Premium Unleaded. Super Unleaded, with 97/98 RON and branded high-performance fuels (e.g. Shell V-Power, BP Ultimate) with 99 RON make up the balance. Gasoline with 102 RON may rarely be available for racing purposes. In the United States, octane ratings in unleaded fuels vary between 85 and 87 AKI (91–92 RON) for regular, 89–90 AKI (94–95 RON) for mid-grade (equivalent to European regular), up to 90–94 AKI (95–99 RON) for premium (European premium). As South Africa's largest city, Johannesburg, is located on the Highveld at above sea level, the Automobile Association of South Africa recommends 95-octane gasoline at low altitude and 93-octane for use in Johannesburg because "The higher the altitude the lower the air pressure, and the lower the need for a high octane fuel as there is no real performance gain". Octane rating became important as the military sought higher output for aircraft engines in the late 1930s and the 1940s. A higher octane rating allows a higher
compression ratio The compression ratio is the ratio between the volume of the cylinder A cylinder (from ) has traditionally been a Solid geometry, three-dimensional solid, one of the most basic of curvilinear geometric shapes. Geometrically, it can be conside ...

compression ratio
or supercharger boost, and thus higher temperatures and pressures, which translate to higher power output. Some scientists even predicted that a nation with a good supply of high-octane gasoline would have the advantage in air power. In 1943, the Rolls-Royce Merlin aero engine produced 1,320 horsepower (984 kW) using 100 RON fuel from a modest 27-liter displacement. By the time of Operation Overlord, both the RAF and USAAF were conducting some operations in Europe using 150 RON fuel (100/150 avgas), obtained by adding 2.5% aniline to 100-octane avgas. By this time the Rolls-Royce Merlin 66 was developing 2,000 hp using this fuel.


Additives


Antiknock additives


Tetraethyllead

Gasoline, when used in high-compression (physical), compression internal combustion engines, tends to auto-ignite or "detonate" causing damaging
engine knocking Knocking (also knock, detonation, spark knock, pinging or pinking) in spark ignition internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine In thermodynamics Thermodynamics is a branch of phy ...
(also called "pinging" or "pinking"). To address this problem,
tetraethyllead Tetraethyllead (commonly styled tetraethyl lead), abbreviated TEL, is an organolead compoundOrganolead compounds are chemical compounds containing a chemical bond between carbon and lead. Organolead chemistry is the corresponding science. The fi ...
(TEL) was widely adopted as an additive for gasoline in the 1920s. With a growing awareness of the seriousness of the extent of environmental and health damage caused by lead compounds, however, and the incompatibility of lead with catalytic converters, governments began to mandate reductions in gasoline lead. In the United States, the Environmental Protection Agency issued regulations to reduce the lead content of leaded gasoline over a series of annual phases, scheduled to begin in 1973 but delayed by court appeals until 1976. By 1995, leaded fuel accounted for only 0.6 percent of total gasoline sales and under of lead per year. From 1 January 1996, the Clean Air Act (United States), U.S. Clean Air Act banned the sale of leaded fuel for use in on-road vehicles in the U.S. The use of TEL also necessitated other additives, such as dibromoethane. European countries began replacing lead-containing additives by the end of the 1980s, and by the end of the 1990s, leaded gasoline was banned within the entire European Union. The UAE started to switch to unleaded in the early 2000s. Reduction in the average lead content of human blood may be a major cause for falling violent crime rates around the world including South Africa. A study found a correlation between leaded gasoline usage and violent crime.Reyes, J. W. (2007)
"The Impact of Childhood Lead Exposure on Crime". National Bureau of Economic Research.
"a" ref citing Pirkle, Brody, et. al (1994). Retrieved 17 August 2009.
Other studies found no correlation.() In August 2021, the United Nations Environment Programme, UN Environment Programme announced that leaded petrol had been eradicated worldwide, with Algeria being the last county to deplete its reserves. Secretary-General of the United Nations, UN Secretary-General António Guterres called the eradication of leaded petrol an "international success story". He also added: "Ending the use of leaded petrol will prevent more than one million premature deaths each year from heart disease, strokes and cancer, and it will protect children whose IQs are damaged by exposure to lead". Greenpeace called the announcement "the end of one toxic era". However, leaded gasoline continues to be used in aeronautic, auto racing and off-road applications. The use of leaded additives is still permitted worldwide for the formulation of some grades of aviation gasoline such as 100LL, because the required octane rating is difficult to reach without the use of leaded additives. Different additives have replaced lead compounds. The most popular additives include
aromatic hydrocarbon Aromatic compounds are those chemical compounds (most commonly organic compound, organic) that contain one or more ring (chemistry), rings with pi electrons delocalized all the way around them. In contrast to compounds that exhibit aromaticity, al ...
s, ethers (
MTBE Methyl ''tertiary''-butyl ether (MTBE), also known as methyl tert-butyl ether and ''tert''-butyl methyl ether, is an organic compound In chemistry Chemistry is the study of the properties and behavior of . It is a that covers the th ...

MTBE
and
ETBE Ethyl ''tertiary''-butyl ether (ETBE), also known as ethyl ''tert''-butyl ether, is commonly used as an oxygenate Oxygenated chemical compounds contain oxygen Oxygen is the chemical element with the chemical symbol, symbol O and a ...
), and alcohol as a fuel, alcohols, most commonly
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ (anatomy), ...

ethanol
.


Lead replacement petrol

Lead replacement petrol (LRP) was developed for vehicles designed to run on leaded fuels and incompatible with unleaded fuels. Rather than tetraethyllead, it contains other metals such as potassium compounds or methylcyclopentadienyl manganese tricarbonyl (MMT); these are purported to buffer soft exhaust valves and seats so that they do not suffer recession due to the use of unleaded fuel. LRP was marketed during and after the phaseout of leaded motor fuels in the United Kingdom, Australia, South Africa, and some other countries. Consumer confusion led to a widespread mistaken preference for LRP rather than unleaded, and LRP was phased out 8 to 10 years after the introduction of unleaded. Leaded gasoline was withdrawn from sale in Britain after 31 December 1999, seven years after European Economic Community, EEC regulations signaled the end of production for cars using leaded gasoline in member states. At this stage, a large percentage of cars from the 1980s and early 1990s which ran on leaded gasoline were still in use, along with cars that could run on unleaded fuel. However, the declining number of such cars on British roads saw many gasoline stations withdrawing LRP from sale by 2003.


MMT

Methylcyclopentadienyl manganese tricarbonyl (MMT) is used in Canada and the US to boost octane rating. Its use in the United States has been restricted by regulations, although it is currently allowed. Its use in the European Union is restricted by Article 8a of the Fuel Quality Directive following its testing under the Protocol for the evaluation of effects of metallic fuel-additives on the emissions performance of vehicles.


Fuel stabilizers (antioxidants and metal deactivators)

Gummy, sticky resin deposits result from oxidation, oxidative degradation of gasoline during long-term storage. These harmful deposits arise from the oxidation of alkenes and other minor components in gasoline (see drying oils). Improvements in refinery techniques have generally reduced the susceptibility of gasolines to these problems. Previously, catalytically or thermally cracked gasolines were most susceptible to oxidation. The formation of gums is accelerated by copper salts, which can be neutralized by additives called metal deactivators. This degradation can be prevented through the addition of 5–100 ppm of antioxidants, such as phenylenediamines and other amines. Hydrocarbons with a bromine number of 10 or above can be protected with the combination of unhindered or partially hindered phenols and oil-soluble strong amine bases, such as hindered phenols. "Stale" gasoline can be detected by a colorimetric enzymatic test for organic peroxides produced by oxidation of the gasoline. Gasolines are also treated with metal deactivators, which are compounds that sequester (deactivate) metal salts that otherwise accelerate the formation of gummy residues. The metal impurities might arise from the engine itself or as contaminants in the fuel.


Detergents

Gasoline, as delivered at the pump, also contains additives to reduce internal engine carbon buildups, improve combustion and allow easier starting in cold climates. High levels of detergent can be found in Top Tier Detergent Gasolines. The specification for Top Tier Detergent Gasolines was developed by four automakers: General Motors, GM, Honda, Toyota, and BMW. According to the bulletin, the minimal U.S. Environmental Protection Agency, EPA requirement is not sufficient to keep engines clean. Typical detergents include Amine#Classification of amines, alkylamines and alkyl phosphates at a level of 50–100 ppm.


Ethanol


European Union

In the EU, 5%
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ (anatomy), ...

ethanol
can be added within the common gasoline spec (EN 228). Discussions are ongoing to allow 10% blending of ethanol (available in Finnish, French and German gas stations). In Finland, most gasoline stations sell 95E10, which is 10% ethanol, and 98E5, which is 5% ethanol. Most gasoline sold in Sweden has 5–15% ethanol added. Three different ethanol blends are sold in the Netherlands—E5, E10 and hE15. The last of these differs from standard ethanol–gasoline blends in that it consists of 15% hydrous ethanol (i.e., the ethanol–water azeotrope) instead of the anhydrous ethanol traditionally used for blending with gasoline.


Brazil

The Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP) requires gasoline for automobile use to have 27.5% of ethanol added to its composition. Pure hydrated ethanol is also available as a fuel.


Australia

Legislation requires retailers to label fuels containing ethanol on the dispenser, and limits ethanol use to 10% of gasoline in Australia. Such gasoline is commonly called Common ethanol fuel mixtures, E10 by major brands, and it is cheaper than regular unleaded gasoline.


United States

The federal Renewable Fuel Standard (RFS) effectively requires refiners and blenders to blend renewable biofuels (mostly ethanol) with gasoline, sufficient to meet a growing annual target of total gallons blended. Although the mandate does not require a specific percentage of ethanol, annual increases in the target combined with declining gasoline consumption have caused the typical ethanol content in gasoline to approach 10%. Most fuel pumps display a sticker that states that the fuel may contain up to 10% ethanol, an intentional disparity that reflects the varying actual percentage. Until late 2010, fuel retailers were only authorized to sell fuel containing up to 10 percent ethanol (E10), and most vehicle warranties (except for flexible fuel vehicles) authorize fuels that contain no more than 10 percent ethanol. In parts of the United States, ethanol is sometimes added to gasoline without an indication that it is a component.


India

In October 2007, the Government of India decided to make 5% ethanol blending (with gasoline) mandatory. Currently, 10% ethanol blended product (E10) is being sold in various parts of the country. Ethanol has been found in at least one study to damage catalytic converters.


Dyes

Though gasoline is a naturally colorless liquid, many gasolines are dyed in various colors to indicate their composition and acceptable uses. In Australia, the lowest grade of gasoline (RON 91) was dyed a light shade of red/orange and is now the same color as the medium grade (RON 95) and high octane (RON 98), which are dyed yellow. In the United States, aviation gasoline (avgas) is dyed to identify its octane rating and to distinguish it from kerosene-based jet fuel, which is clear. In Canada, the gasoline for marine and farm use is dyed red and is not subject to sales tax.


Oxygenate blending

Oxygenate blending adds oxygen-bearing compounds such as Methyl tert-butyl ether, MTBE, Ethyl tert-butyl ether, ETBE, tert-Amyl methyl ether, TAME, tert-Amyl ethyl ether, TAEE,
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ (anatomy), ...

ethanol
, and biobutanol. The presence of these oxygenates reduces the amount of carbon monoxide and unburned fuel in the exhaust. In many areas throughout the U.S., oxygenate blending is mandated by EPA regulations to reduce smog and other airborne pollutants. For example, in Southern California fuel must contain 2% oxygen by weight, resulting in a mixture of 5.6% ethanol in gasoline. The resulting fuel is often known as reformulated gasoline (RFG) or oxygenated gasoline, or in the case of California, California reformulated gasoline. The federal requirement that RFG contain oxygen was dropped on 6 May 2006 because the industry had developed Volatile organic compound, VOC-controlled RFG that did not need additional oxygen. MTBE was phased out in the U.S. due to groundwater contamination and the resulting regulations and lawsuits. Ethanol and, to a lesser extent, ethanol-derived ETBE are common substitutes. A common ethanol-gasoline mix of 10% ethanol mixed with gasoline is called Ethanol fuel, gasohol or E10, and an ethanol-gasoline mix of 85% ethanol mixed with gasoline is called E85. The most extensive use of ethanol takes place in Brazil, where the ethanol is derived from sugarcane. In 2004, over 3.4 billion US gallons (2.8 billion imp gal; 13 million m³) of ethanol was produced in the United States for fuel use, mostly from maize, corn, and E85 is slowly becoming available in much of the United States, though many of the relatively few stations vending E85 are not open to the general public. The use of bioethanol and bio-methanol, either directly or indirectly by conversion of ethanol to bio-ETBE, or methanol to bio-MTBE is encouraged by the European Union Directive on the Promotion of the use of biofuels and other renewable fuels for transport. Since producing bioethanol from fermented sugars and starches involves distillation, though, ordinary people in much of Europe cannot legally ferment and distill their own bioethanol at present (unlike in the U.S., where getting a BATF distillation permit has been easy since the 1973 oil crisis).


Safety


Toxicity

The safety data sheet for a 2003 Texas, Texan unleaded gasoline shows at least 15 hazardous chemicals occurring in various amounts, including
benzene Benzene is an organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ (anatomy), organ Chemistry * Organic matter, matter that has come from a once-living organi ...

benzene
(up to 5% by volume),
toluene Toluene (), also known as toluol (), is an aromatic hydrocarbon. It is a colorless, Water (molecule), water-insoluble liquid with the smell associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group ( ...

toluene
(up to 35% by volume), naphthalene (up to 1% by volume), 1,2,4-Trimethylbenzene, trimethylbenzene (up to 7% by volume), Methyl tert-butyl ether, methyl ''tert''-butyl ether (MTBE) (up to 18% by volume, in some states) and about ten others. Hydrocarbons in gasoline generally exhibit low acute toxicities, with LD50 of 700–2700 mg/kg for simple aromatic compounds. Benzene and many antiknocking additives are carcinogenic. People can be exposed to gasoline in the workplace by swallowing it, breathing in vapors, skin contact, and eye contact. Gasoline is toxic. The National Institute for Occupational Safety and Health (NIOSH) has also designated gasoline as a carcinogen. Physical contact, ingestion, or inhalation can cause health problems. Since ingesting large amounts of gasoline can cause permanent damage to major organs, a call to a local poison control center or emergency room visit is indicated. Contrary to common misconception, swallowing gasoline does not generally require special emergency treatment, and inducing vomiting does not help, and can make it worse. According to poison specialist Brad Dahl, "even two mouthfuls wouldn't be that dangerous as long as it goes down to your stomach and stays there or keeps going." The US Centers for Disease Control and Prevention, CDC's Agency for Toxic Substances and Disease Registry says not to induce vomiting, lavage, or administer activated carbon, activated charcoal.


Inhalation for intoxication

Inhalant, Inhaled (huffed) gasoline vapor is a common intoxicant. Users concentrate and inhale gasoline vapour in a manner not intended by the manufacturer to produce euphoria and Substance intoxication, intoxication. Gasoline inhalation has become epidemic in some poorer communities and indigenous groups in Australia, Canada, New Zealand, and some Pacific Islands.gasoline Sniffing Fact File
Sheree Cairney, www.abc.net.au, Published 24 November 2005. Retrieved 13 October 2007, a modified version o

, now archive

/ref> The practice is thought to cause severe organ damage, along with other effects such as intellectual disability and various cancers. In Canada, Native children in the isolated Northern Labrador community of Davis Inlet, Newfoundland and Labrador, Davis Inlet were the focus of national concern in 1993, when many were found to be sniffing gasoline. The Canadian and provincial Newfoundland and Labrador governments intervened on several occasions, sending many children away for treatment. Despite being moved to the new community of Natuashish, Newfoundland and Labrador, Natuashish in 2002, serious inhalant abuse problems have continued. Similar problems were reported in Sheshatshiu, Newfoundland and Labrador, Sheshatshiu in 2000 and also in Pikangikum First Nation. In 2012, the issue once again made the news media in Canada. Australia has long faced a petrol (gasoline) sniffing problem in isolated and impoverished Australian Aborigines, aboriginal communities. Although some sources argue that sniffing was introduced by United States soldier, servicemen stationed in the nation's Top End during World War II or through experimentation by 1940s-era Cobourg Peninsula sawmill workers, other sources claim that inhalant abuse (such as glue inhalation) emerged in Australia in the late 1960s. Chronic, heavy petrol sniffing appears to occur among remote, impoverished indigenous Australians, indigenous communities, where the ready accessibility of petrol has helped to make it a common substance for abuse. In Australia, petrol sniffing now occurs widely throughout remote Aboriginal communities in the Northern Territory, Western Australia, northern parts of South Australia, and Queensland. The number of people sniffing petrol goes up and down over time as young people experiment or sniff occasionally. "Boss", or chronic, sniffers may move in and out of communities; they are often responsible for encouraging young people to take it up. In 2005, the Government of Australia and BP, BP Australia began the usage of Opal (fuel), Opal fuel in remote areas prone to petrol sniffing. Opal is a non-sniffable fuel (which is much less likely to cause a high) and has made a difference in some indigenous communities.


Flammability

Like other hydrocarbons, gasoline burns in a limited range of its vapor phase and, coupled with its volatility, this makes leaks highly dangerous when sources of ignition are present. Gasoline has a lower explosive limit of 1.4% by volume and an upper explosive limit of 7.6%. If the concentration is below 1.4%, the air-gasoline mixture is too lean and does not ignite. If the concentration is above 7.6%, the mixture is too rich and also does not ignite. However, gasoline vapor rapidly mixes and spreads with air, making unconstrained gasoline quickly flammable.


Gasoline exhaust

The exhaust gas generated by burning gasoline not only does serious harm to the environment but also to people's health. After CO is inhaled into the human body, it is very easy to combine with hemoglobin in the blood, and its affinity is 300 times that of oxygen. Therefore, the hemoglobin in the lungs does not combine with oxygen but with CO, causing the human body to be hypoxic, causing headaches, dizziness, vomiting, and other poisoning symptoms. In severe cases, it may lead to death.. Hydrocarbons only affect the human body when their concentration is quite high, and their toxicity level depends on the chemical composition. The hydrocarbons produced by incomplete combustion include alkanes, aromatics, and aldehydes. Among them, a concentration of methane and ethane over 35 g/m3 will cause loss of consciousness or suffocation, a concentration of pentane and hexane over 45 g/m3 will have an anesthetic effect, and aromatic hydrocarbons will have more serious effects on health, blood toxicity, neurotoxicity, and cancer. If the concentration of benzene exceeds 40 ppm, it can cause leukemia, and xylene can cause headache, dizziness, nausea, and vomiting. Human exposure to large amounts of aldehydes can cause eye irritation, nausea, and dizziness. In addition to carcinogenic effects, long-term exposure can cause damage to the skin, liver, kidneys, and cataracts. After NOx enters the alveoli, it has a severe stimulating effect on the lung tissue. It can irritate the conjunctiva of the eyes, cause tearing and cause pink eyes. It also has a stimulating effect on the nose, pharynx, throat, and other organs. It can cause acute wheezing, breathing difficulties, red eyes, sore throat, and dizziness causing poisoning.


Environmental impact

In recent years, with the rapid development of the motor vehicle economy, the production and use of motor vehicles have increased dramatically, and the pollution by motor vehicle exhaust to the environment has become more and more serious. The air pollution in many large cities has changed from coal-burning pollution to "motor vehicle pollution." In the United States, transportation is the largest source of carbon emissions, accounting for 30% of the total carbon footprint of the United States. Combustion of gasoline produces of carbon dioxide, a greenhouse gas. Unburnt gasoline and Automobile emissions control#Evaporative emissions control, evaporation from the tank, when in the atmosphere, react in sunlight to produce photochemical smog. Vapor pressure initially rises with some addition of ethanol to gasoline, but the increase is greatest at 10% by volume. At higher concentrations of ethanol above 10%, the vapor pressure of the blend starts to decrease. At a 10% ethanol by volume, the rise in vapor pressure may potentially increase the problem of photochemical smog. This rise in vapor pressure could be mitigated by increasing or decreasing the percentage of ethanol in the gasoline mixture. The chief risks of such leaks come not from vehicles, but gasoline delivery truck accidents and leaks from storage tanks. Because of this risk, most (underground) storage tanks now have extensive measures in place to detect and prevent any such leaks, such as monitoring systems (Veeder-Root, Franklin Fueling). Production of gasoline consumes of water by driven distance. Gasoline use causes a variety of deleterious effects to the human population and to the climate generally. The harms imposed include a higher rate of premature death and ailments, such as asthma, caused by air pollution, higher healthcare costs for the public generally, decreased crop yields, missed work and school days due to illness, increased flooding and other extreme weather events linked to global climate change, and other social costs. The costs imposed on society and the planet are estimated to be $3.80 per gallon of gasoline, in addition to the price paid at the pump by the user. The damage to the health and climate caused by a gasoline-powered vehicle greatly exceeds that caused by electric vehicles.


Carbon dioxide

About of carbon dioxide (CO2) are produced from burning gasoline that does not contain ethanol. About of CO2 are produced from burning diesel fuel. The U.S. Energy Information Administration, EIA estimates that U.S. motor gasoline and diesel (distillate) fuel consumption for transportation in 2015 resulted in the emission of about 1,105 million metric tons of CO2 and 440 million metric tons of CO2, respectively, for a total of 1,545 million metric tons of CO2. This total was equivalent to 83% of total U.S. transportation-sector CO2 emissions and equivalent to 29% of total U.S. energy-related CO2 emissions in 2015. Most of the retail gasoline now sold in the United States contains about 10% fuel ethanol (or E10) by volume. Burning E10 produces about of CO2 that is emitted from the fossil fuel content. If the CO2 emissions from ethanol combustion are considered, then about of CO2 are produced when E10 is combusted. About of CO2 are produced when pure ethanol is combusted.


Contamination of soil and water

Gasoline enters the environment through the soil, groundwater, surface water, and air. Therefore, humans may be exposed to gasoline through methods such as breathing, eating, and skin contact. For example, using gasoline-filled equipment, such as lawnmowers, drinking gasoline-contaminated water close to gasoline spills or leaks to the soil, working at a gas station, inhaling gasoline volatile gas when refueling at a gas station is the easiest way to be exposed to gasoline.


Use and pricing


Europe

Countries in Europe impose substantially higher fuel tax, taxes on fuels such as gasoline when compared to the United States. The price of gasoline in Europe is typically higher than that in the U.S. due to this difference.


United States

From 1998 to 2004, the price of gasoline fluctuated between US$1 and US$2 per U.S. gallon. After 2004, the price increased until the average gas price reached a high of $4.11 per U.S. gallon in mid-2008, but receded to approximately $2.60 per U.S. gallon by September 2009. The U.S. experienced an upswing in gasoline prices through 2011, and by 1 March 2012, the national average was $3.74 per gallon. California prices are higher because the California government mandates unique California gasoline formulas and taxes. In the United States, most consumer goods bear pre-tax prices, but gasoline prices are posted with taxes included. Taxes are added by federal, state, and local governments. As of 2009, the federal tax was 18.4¢ per gallon for gasoline and 24.4¢ per gallon for diesel fuel, diesel (excluding red diesel). About 9 percent of all gasoline sold in the U.S. in May 2009 was premium grade, according to the Energy Information Administration. ''Consumer Reports'' magazine says, "If [your owner’s manual] says to use regular fuel, do so—there's no advantage to a higher grade." The ''Associated Press'' said premium gas—which has a higher octane rating and costs more per gallon than regular unleaded—should be used only if the manufacturer says it is "required". Cars with turbocharger, turbocharged engines and high compression ratios often specify premium gas because higher octane fuels reduce the incidence of "knock", or fuel pre-detonation. The price of gas varies considerably between the summer and winter months. There is a considerable difference between summer oil and winter oil in gasoline vapor pressure (Reid Vapor Pressure, RVP), which is a measure of how easily the fuel evaporates at a given temperature. The higher the gasoline volatility (the higher the RVP), the easier it is to evaporate. The conversion between the two fuels occurs twice a year, once in autumn (winter mix) and the other in spring (summer mix). The winter blended fuel has a higher RVP because the fuel must be able to evaporate at a low temperature for the engine to run normally. If the RVP is too low on a cold day, the vehicle will be difficult to start; however, the summer blended gasoline has a lower RVP. It prevents excessive evaporation when the outdoor temperature rises, reduces ozone emissions, and reduces smog levels. At the same time, vapor lock is less likely to occur in hot weather.


Gasoline production by country


Comparison with other fuels

Below is a table of the volumetric and mass energy density of various transportation fuels as compared with gasoline. In the rows with higher heating value, gross and lower heating value, net, they are from the Oak Ridge National Laboratory's Transportation Energy Data Book. (*) Diesel fuel is not used in a gasoline engine, so its low octane rating is not an issue; the relevant metric for diesel engines is the cetane number.


See also


Notes


References


Bibliography

* Gold, Russell. ''The Boom: How Fracking Ignited the American Energy Revolution and Changed the World'' (Simon & Schuster, 2014). * Yergin, Daniel. ''The Quest: Energy, Security, and the Remaking of the Modern World'' (Penguin, 2011). * Yergin, Daniel. ''The Prize: The Epic Quest for Oil, Money, and Power'' (Buccaneer Books, 1994; latest edition: Reissue Press, 2008).
Graph of inflation-corrected historic prices, 1970–2005. Highest in 2005

The Low-Down on High Octane Gasoline


* A

and to the Russian-Ukrainian theory of deep, abiotic petroleum origins.
What's the difference between premium and regular gas?
(from The Straight Dope)
International Fuel Prices 2005
with diesel and gasoline prices of 172 countries
EIA—Gasoline and Diesel Fuel Update

World Internet News: "Big Oil Looking for Another Government Handout", April 2006.




* [https://www.epa.gov/OMSWWW/rfgecon.htm Fuel Economy Impact Analysis of RFG] i.e. reformulated gasoline. Has lower heating value data, actual energy content is higher see higher heating value

'A Refiner's Viewpoint on Motor Fuel Quality' About the fuel specs refiners can control. Holaday W, and Happel J. (SAE paper 430113, 1943).


External links


CNN/Money: Global gas prices

EEP: European gas prices

Transportation Energy Data Book

Energy Supply Logistics Searchable Directory of US Terminals

High octane fuel, leaded and LRP gasoline—article from robotpig.net



Aviation Fuel Map
;Images *
Down the Gasoline Trail
' Handy Jam Organization, 1935 (Cartoon) {{Authority control IARC Group 2B carcinogens Liquid fuels Petroleum products Inhalants