Galvanic cell
   HOME

TheInfoList



OR:

A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and
Alessandro Volta Alessandro Giuseppe Antonio Anastasio Volta (, ; ; 18 February 1745 – 5 March 1827) was an Italian chemist and physicist who was a pioneer of electricity and Power (physics), power, and is credited as the inventor of the electric battery a ...
, respectively, is an
electrochemical cell An electrochemical cell is a device that either generates electrical energy from chemical reactions in a so called galvanic cell, galvanic or voltaic cell, or induces chemical reactions (electrolysis) by applying external electrical energy in an ...
in which an electric current is generated from spontaneous oxidation–reduction reactions. An example of a galvanic cell consists of two different metals, each immersed in separate beakers containing their respective metal ions in solution that are connected by a
salt bridge In electrochemistry, a salt bridge or ion bridge is an essential laboratory device discovered over 100 years ago. It contains an electrolyte solution, typically an inert solution, used to connect the Redox, oxidation and reduction Half cell, ...
or separated by a porous membrane. Volta was the inventor of the voltaic pile, the first
electrical battery An electric battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive Terminal (electronics), terminal is the ...
. Common usage of the word ''battery'' has evolved to include a single Galvanic cell, but the first batteries had many Galvanic cells.


History

In 1780, Luigi Galvani discovered that when two different metals (e.g., copper and zinc) are in contact and then both are touched at the same time to two different parts of a muscle of a frog leg, to close the circuit, the frog's leg contracts. He called this " animal electricity". The frog's leg, as well as being a detector of electrical current, was also the
electrolyte An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
(to use the language of modern chemistry). A year after Galvani published his work (1790),
Alessandro Volta Alessandro Giuseppe Antonio Anastasio Volta (, ; ; 18 February 1745 – 5 March 1827) was an Italian chemist and physicist who was a pioneer of electricity and Power (physics), power, and is credited as the inventor of the electric battery a ...
showed that the frog was not necessary, using instead a force-based detector and brine-soaked paper (as electrolyte). (Earlier Volta had established the law of capacitance with force-based detectors). In 1799 Volta invented the voltaic pile, which is a stack of galvanic cells each consisting of a metal disk, an electrolyte layer, and a disk of a different metal. He built it entirely out of non-biological material to challenge Galvani's (and the later experimenter Leopoldo Nobili)'s animal electricity theory in favor of his own metal-metal contact electricity theory. Carlo Matteucci in his turn constructed a battery entirely out of biological material in answer to Volta. Volta's contact electricity view characterized each electrode with a number that we would now call the work function of the electrode. This view ignored the chemical reactions at the electrode-electrolyte interfaces, which include formation on the more noble metal in Volta's pile. Although Volta did not understand the operation of the battery or the galvanic cell, these discoveries paved the way for electrical batteries; Volta's cell was named an IEEE Milestone in 1999. Some forty years later, Faraday (see Faraday's laws of electrolysis) showed that the galvanic cell—now often called a voltaic cell—was chemical in nature. Faraday introduced new terminology to the language of chemistry:
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
(
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional curren ...
and
anode An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
),
electrolyte An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
, and ion (
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
and
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
). Thus Galvani incorrectly thought the source of electricity (or source of
electromotive force In electromagnetism and electronics, electromotive force (also electromotance, abbreviated emf, denoted \mathcal) is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical ''transducer ...
(emf), or seat of emf) was in the animal, Volta incorrectly thought it was in the physical properties of the isolated electrodes, but Faraday correctly identified the source of emf as the chemical reactions at the two electrode-electrolyte interfaces. The authoritative work on the intellectual history of the voltaic cell remains that by Ostwald. It was suggested by Wilhelm König in 1940 that the object known as the Baghdad battery might represent galvanic cell technology from ancient
Parthia Parthia ( ''Parθava''; ''Parθaw''; ''Pahlaw'') is a historical region located in northeastern Greater Iran. It was conquered and subjugated by the empire of the Medes during the 7th century BC, was incorporated into the subsequent Achaemeni ...
. Replicas filled with citric acid or grape juice have been shown to produce a voltage. However, it is far from certain that this was its purpose—other scholars have pointed out that it is very similar to vessels known to have been used for storing parchment scrolls.Haughton, Brian (2007) ''Hidden History: Lost Civilizations, Secret Knowledge, and Ancient Mysteries''. Career Press. . pp. 129–132


Principles

upright=1.55, Schematic of Zn–Cu galvanic cell Galvanic cells are extensions of spontaneous
redox Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is t ...
reactions, but have been merely designed to harness the energy produced from said reaction. For example, when one immerses a strip of zinc metal (Zn) in an aqueous solution of copper sulfate (), dark-colored solid deposits will collect on the surface of the zinc metal and the blue color characteristic of the ion disappears from the solution. The depositions on the surface of the zinc metal consist of copper metal, and the solution now contains zinc ions. This reaction is represented by: : In this
redox Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is t ...
reaction, Zn is oxidized to and is reduced to Cu. When electrons are transferred directly from Zn to , the
enthalpy Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
of reaction is lost to the surroundings as heat. However, the same reaction can be carried out in a galvanic cell, allowing some of the chemical energy released to be converted into electrical energy. In its simplest form, a half-cell consists of a solid metal (called an
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
) that is submerged in a solution; the solution contains
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s (+) of the electrode metal and
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s (−) to balance the charge of the cations. The full cell consists of two half-cells, usually connected by a
semi-permeable membrane Semipermeable membrane is a type of synthetic or biologic, polymeric membrane that allows certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecules o ...
or by a
salt bridge In electrochemistry, a salt bridge or ion bridge is an essential laboratory device discovered over 100 years ago. It contains an electrolyte solution, typically an inert solution, used to connect the Redox, oxidation and reduction Half cell, ...
that prevents the ions of the more noble metal from plating out at the other electrode. A specific example is the Daniell cell (see figure), with a
zinc Zinc is a chemical element; it has symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodic tabl ...
(Zn) half-cell containing a solution of (zinc sulfate) and a
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
(Cu) half-cell containing a solution of (copper sulfate). A salt bridge is used here to complete the electric circuit. If an external electrical conductor connects the copper and zinc electrodes, zinc from the zinc electrode dissolves into the solution as ions (oxidation), releasing electrons that enter the external conductor. To compensate for the increased zinc ion concentration, via the salt bridge zinc ions (cations) leave and sulfate ions (anions) enter the zinc half-cell. In the copper half-cell, the copper ions plate onto the copper electrode (reduction), taking up electrons that leave the external conductor. Since the ions (cations) plate onto the copper electrode, the latter is called the
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional curren ...
. Correspondingly the zinc electrode is the
anode An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
. The electrochemical reaction is: : This is the same reaction as given in the previous example. In addition, electrons flow through the external conductor, which is the primary application of the galvanic cell. As discussed under cell voltage, the
electromotive force In electromagnetism and electronics, electromotive force (also electromotance, abbreviated emf, denoted \mathcal) is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical ''transducer ...
of the cell is the difference of the half-cell potentials, a measure of the relative ease of dissolution of the two electrodes into the electrolyte. The emf depends on both the electrodes and on the electrolyte, an indication that the emf is chemical in nature.


Half reactions and conventions

A half-cell contains a metal in two
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
s. Inside an isolated half-cell, there is an oxidation-reduction (redox) reaction that is in chemical equilibrium, a condition written symbolically as follows (here, "M" represents a metal cation, an atom that has a charge imbalance due to the loss of electrons): :M + e M A galvanic cell consists of two half-cells, such that the electrode of one half-cell is composed of metal A, and the electrode of the other half-cell is composed of metal B; the redox reactions for the two separate half-cells are thus: :A + + e A :B + + e B The overall balanced reaction is: : A + B + B + A + In other words, the metal atoms of one half-cell are oxidized while the metal cations of the other half-cell are reduced. By separating the metals in two half-cells, their reaction can be controlled in a way that forces transfer of electrons through the external circuit where they can do useful work. The electrodes are connected with a metal wire in order to conduct the electrons that participate in the reaction. In one half-cell, dissolved metal B cations combine with the free electrons that are available at the interface between the solution and the metal B electrode; these cations are thereby neutralized, causing them to precipitate from solution as deposits on the metal B electrode, a process known as plating. This reduction reaction causes the free electrons throughout the metal B electrode, the wire, and the metal A electrode to be pulled into the metal B electrode. Consequently, electrons are wrestled away from some of the atoms of the metal A electrode, as though the metal B cations were reacting directly with them; those metal A atoms become cations that dissolve into the surrounding solution. As this reaction continues, the half-cell with the metal A electrode develops a positively charged solution (because the metal A cations dissolve into it), while the other half-cell develops a negatively charged solution (because the metal B cations precipitate out of it, leaving behind the anions); unabated, this imbalance in charge would stop the reaction. The solutions of the half-cells are connected by a salt bridge or a porous plate that allows ions to pass from one solution to the other, which balances the charges of the solutions and allows the reaction to continue. By definition: *The
anode An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
is the electrode where oxidation (loss of electrons) takes place (metal A electrode); in a galvanic cell, it is the negative electrode, because when oxidation occurs, electrons are left behind on the electrode. These electrons then flow through the external circuit to the cathode (positive electrode) (while in electrolysis, an electric current drives electron flow in the opposite direction and the anode is the positive electrode). *The
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional curren ...
is the electrode where reduction (gain of electrons) takes place (metal B electrode); in a galvanic cell, it is the positive electrode, as ions get reduced by taking up electrons from the electrode and plate out (while in electrolysis, the cathode is the negative terminal and attracts positive ions from the solution). In both cases, the statement 'the cathode attracts cations' is true. By their nature, galvanic cells produce
direct current Direct current (DC) is one-directional electric current, flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor (material), conductor such as a wire, but can also flow throug ...
. The '' Weston cell'' has an anode composed of
cadmium Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...
mercury amalgam, and a cathode composed of pure mercury. The electrolyte is a (saturated) solution of cadmium sulfate. The depolarizer is a paste of mercurous sulfate. When the electrolyte solution is saturated, the voltage of the cell is very reproducible; hence, in 1911, it was adopted as an international standard for voltage. In the strictest sense, a ''battery'' is a set of two or more galvanic cells that are connected in series to form a single source of voltage. For instance, a typical 12 V
lead–acid battery The lead–acid battery is a type of rechargeable battery first invented in 1859 by French physicist Gaston Planté. It was the first type of rechargeable battery to be invented. Compared to modern rechargeable batteries, lead–acid batteries ha ...
has six galvanic cells connected in series, with the anodes composed of lead and cathodes composed of lead dioxide, both immersed in
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
. Large central office battery rooms – in a
telephone exchange A telephone exchange, telephone switch, or central office is a central component of a telecommunications system in the public switched telephone network (PSTN) or in large enterprises. It facilitates the establishment of communication circuits ...
to provide power for subscribers' land-line telephones, for instance – may have many cells, connected both in series and parallel: Individual cells are connected in series as a ''battery'' of cells with some standard voltage (), and ''banks'' of such serial batteries, themselves connected in parallel, to provide adequate amperage to supply a typical peak demand for telephone connections.


Cell voltage

The voltage (
electromotive force In electromagnetism and electronics, electromotive force (also electromotance, abbreviated emf, denoted \mathcal) is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical ''transducer ...
) produced by a galvanic cell can be estimated from the standard
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol is a thermodynamic potential that can be used to calculate the maximum amount of Work (thermodynamics), work, other than Work (thermodynamics)#Pressure–v ...
change in the electrochemical reaction according to: \ E_\mathsf^\mathsf ~~=\ -\frac\ where is the number of electrons transferred in the balanced half reactions, and is Faraday's constant. However, it can be determined more conveniently by the use of a standard potential table for the two half cells involved. The first step is to identify the two metals and their ions reacting in the cell. Then one looks up the
standard electrode potential In electrochemistry, standard electrode potential E^\ominus, or E^\ominus_, is the electrode potential (a measure of the reducing power of any element or compound) which the IUPAC "Gold Book" defines as ''"the value of the standard emf ( electrom ...
, o, in
volt The volt (symbol: V) is the unit of electric potential, Voltage#Galvani potential vs. electrochemical potential, electric potential difference (voltage), and electromotive force in the International System of Units, International System of Uni ...
s, for each of the two half reactions. The standard potential of the cell is equal to the more positive o value minus the more negative o value. For example, in the figure above the solutions are and . Each solution has a corresponding metal strip in it, and a salt bridge or porous disk connecting the two solutions and allowing ions to flow freely between the copper and zinc solutions. To calculate the standard potential one looks up copper and zinc's half reactions and finds: : ; o = +0.34 V : ; o = −0.76 V Thus the overall reaction is: : The standard potential for the reaction is then The polarity of the cell is determined as follows. Zinc metal is more strongly reducing than copper metal because the standard (reduction) potential for zinc is more negative than that of copper. Thus, zinc metal will lose electrons to copper ions and develop a positive electrical charge. The
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
, , for the cell is given by: \ \log_e K ~~=~~ \frac\ where : is the
Faraday constant In physical chemistry, the Faraday constant (symbol , sometimes stylized as ℱ) is a physical constant defined as the quotient of the total electric charge () by the amount () of elementary charge carriers in any given sample of matter: it ...
, : is the gas constant, and : is the
absolute temperature Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion. Thermodynamic temperature is typically expres ...
in Kelvins. For the Daniell cell Thus, at equilibrium, a few electrons are transferred, enough to cause the electrodes to be charged. Actual half-cell potentials must be calculated by using the Nernst equation as the solutes are unlikely to be in their standard states: \ E_\mathsf ~~=~~ E^\mathsf\ -\ \frac\ \log_e Q\ where is the
reaction quotient In chemical thermodynamics, the reaction quotient (''Q''r or just ''Q'') is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overal ...
. When the charges of the ions in the reaction are equal, this simplifies to: \ E_ ~~=~~ E^\mathsf\ -\ 2.303\ \frac\ \log_ \left\\ where M is the activity of the metal ion in solution. In practice concentration in is used in place of activity. The metal electrode is in its standard state so by definition has unit activity. The potential of the whole cell is obtained as the difference between the potentials for the two half-cells, so it depends on the concentrations of both dissolved metal ions. If the concentrations are the same the Nernst equation is not needed, and ~ E_\mathsf ~=~ E_\mathsf^\mathsf ~~ under the conditions assumed here. The value of is so at 25 °C (298.15 K) the half-cell potential will change by only if the concentration of a metal ion is increased or decreased by a \ E_ ~~=~~ E^\mathsf\ -\ \frac \log_ \left\\ These calculations are based on the assumption that all chemical reactions are in equilibrium. When a current flows in the circuit, equilibrium conditions are not achieved and the cell voltage will usually be reduced by various mechanisms, such as the development of
overpotential In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly r ...
s. Also, since chemical reactions occur when the cell is producing power, the electrolyte concentrations change and the cell voltage is reduced. A consequence of the temperature dependency of standard potentials is that the voltage produced by a galvanic cell is also temperature dependent.


Galvanic corrosion

Galvanic corrosion is the
electrochemical Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase (typi ...
erosion of metals.
Corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
occurs when two dissimilar metals are in contact with each other in the presence of an
electrolyte An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
, such as salt water. This forms a galvanic cell, with hydrogen gas forming on the more noble (less active) metal. The resulting electrochemical potential then develops an electric current that electrolytically dissolves the less noble material. A concentration cell can be formed if the same metal is exposed to two different concentrations of electrolyte.


Types

* Concentration cell *
Electrolytic cell An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would otherwise not occur. The external energy source is a voltage applied between the cell's two electrodes; ...
*
Electrochemical cell An electrochemical cell is a device that either generates electrical energy from chemical reactions in a so called galvanic cell, galvanic or voltaic cell, or induces chemical reactions (electrolysis) by applying external electrical energy in an ...
* Lemon battery * Thermogalvanic cell


See also

* Bioelectrochemical reactor * Resting potential * Bio-nano generator * Cell notation * Desulfation * Electrochemical engineering *
Electrode potential An electrode is an electrical conductor used to make contact with a nonmetallic part of a Electronic circuit, circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can c ...
* Electrohydrogenesis * Electrosynthesis * Enzymatic biofuel cell * Galvanic series * Isotope electrochemistry *
List of battery types This list is a summary of notable electric battery types composed of one or more electrochemical cells. Three lists are provided in the table. The primary (non-rechargeable) and secondary (rechargeable) cell lists are lists of battery chemistry. ...
* Sacrificial anode


References


External links


How to build a galvanic cell battery
from MiniScience.com
Galvanic Cell
an animation

Chemical Education Research Group, Iowa State University.
Electron transfer reactions and redox potentials in GALVANIc cells - what happens to the ions at the phase boundary (NERNST, FARADAY)
(Video by SciFox on TIB AV-Portal) {{Authority control Electrochemical concepts Corrosion