HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as
invertible matrices In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by a ...
so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups allow many group-theoretic problems to be reduced to problems in
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
. In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical object. More formally, a "representation" means a
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
from the group to the automorphism group of an object. If the object is a vector space we have a ''linear representation''. Some people use ''realization'' for the general notion and reserve the term ''representation'' for the special case of linear representations. The bulk of this article describes linear representation theory; see the last section for generalizations.


Branches of group representation theory

The representation theory of groups divides into subtheories depending on the kind of group being represented. The various theories are quite different in detail, though some basic definitions and concepts are similar. The most important divisions are: *''
Finite group In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving tra ...
s'' — Group representations are a very important tool in the study of finite groups. They also arise in the applications of finite group theory to
crystallography Crystallography is the branch of science devoted to the study of molecular and crystalline structure and properties. The word ''crystallography'' is derived from the Ancient Greek word (; "clear ice, rock-crystal"), and (; "to write"). In J ...
and to geometry. If the field of scalars of the vector space has characteristic ''p'', and if ''p'' divides the order of the group, then this is called '' modular representation theory''; this special case has very different properties. See Representation theory of finite groups. *'' Compact groups or locally compact groups'' — Many of the results of finite group representation theory are proved by averaging over the group. These proofs can be carried over to infinite groups by replacement of the average with an integral, provided that an acceptable notion of integral can be defined. This can be done for locally compact groups, using the Haar measure. The resulting theory is a central part of harmonic analysis. The Pontryagin duality describes the theory for commutative groups, as a generalised Fourier transform. See also: Peter–Weyl theorem. *''
Lie groups In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas ...
'' — Many important Lie groups are compact, so the results of compact representation theory apply to them. Other techniques specific to Lie groups are used as well. Most of the groups important in physics and chemistry are Lie groups, and their representation theory is crucial to the application of group theory in those fields. See Representations of Lie groups and Representations of Lie algebras. *'' Linear algebraic groups'' (or more generally ''affine group schemes'') — These are the analogues of Lie groups, but over more general fields than just R or C. Although linear algebraic groups have a classification that is very similar to that of Lie groups, and give rise to the same families of Lie algebras, their representations are rather different (and much less well understood). The analytic techniques used for studying Lie groups must be replaced by techniques from
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, where the relatively weak Zariski topology causes many technical complications. *''Non-compact topological groups'' — The class of non-compact groups is too broad to construct any general representation theory, but specific special cases have been studied, sometimes using ad hoc techniques. The '' semisimple Lie groups'' have a deep theory, building on the compact case. The complementary ''solvable'' Lie groups cannot be classified in the same way. The general theory for Lie groups deals with semidirect products of the two types, by means of general results called '' Mackey theory'', which is a generalization of Wigner's classification methods. Representation theory also depends heavily on the type of
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
on which the group acts. One distinguishes between finite-dimensional representations and infinite-dimensional ones. In the infinite-dimensional case, additional structures are important (e.g. whether or not the space is a Hilbert space,
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
, etc.). One must also consider the type of field over which the vector space is defined. The most important case is the field of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. The other important cases are the field of
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
,
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
s, and fields of p-adic numbers. In general, algebraically closed fields are easier to handle than non-algebraically closed ones. The characteristic of the field is also significant; many theorems for finite groups depend on the characteristic of the field not dividing the order of the group.


Definitions

A representation of a group ''G'' on a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
''V'' over a field ''K'' is a
group homomorphism In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) whe ...
from ''G'' to GL(''V''), the
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
on ''V''. That is, a representation is a map :\rho \colon G \to \mathrm\left(V \right) such that :\rho(g_1 g_2) = \rho(g_1) \rho(g_2) , \qquad \textg_1,g_2 \in G. Here ''V'' is called the representation space and the dimension of ''V'' is called the dimension or degree of the representation. It is common practice to refer to ''V'' itself as the representation when the homomorphism is clear from the context. In the case where ''V'' is of finite dimension ''n'' it is common to choose a basis for ''V'' and identify GL(''V'') with , the group of n \times n
invertible matrices In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by a ...
on the field ''K''. * If ''G'' is a
topological group In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
and ''V'' is a
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
, a continuous representation of ''G'' on ''V'' is a representation ''ρ'' such that the application defined by is continuous. * The kernel of a representation ''ρ'' of a group ''G'' is defined as the normal subgroup of ''G'' whose image under ''ρ'' is the identity transformation: ::\ker \rho = \left\. : A
faithful representation In mathematics, especially in an area of abstract algebra known as representation theory, a faithful representation ρ of a group (mathematics), group on a vector space is a linear representation in which different elements of are represented by ...
is one in which the homomorphism is injective; in other words, one whose kernel is the trivial subgroup consisting only of the group's identity element. * Given two ''K'' vector spaces ''V'' and ''W'', two representations and are said to be equivalent or isomorphic if there exists a vector space
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
so that for all ''g'' in ''G'', ::\alpha \circ \rho(g) \circ \alpha^ = \pi(g).


Examples

Consider the complex number ''u'' = e2πi / 3 which has the property ''u''3 = 1. The set ''C''3 = forms a cyclic group under multiplication. This group has a representation ρ on \mathbb^2 given by: : \rho \left( 1 \right) = \begin 1 & 0 \\ 0 & 1 \\ \end \qquad \rho \left( u \right) = \begin 1 & 0 \\ 0 & u \\ \end \qquad \rho \left( u^2 \right) = \begin 1 & 0 \\ 0 & u^2 \\ \end. This representation is faithful because ρ is a one-to-one map. Another representation for ''C''3 on \mathbb^2, isomorphic to the previous one, is σ given by: : \sigma \left( 1 \right) = \begin 1 & 0 \\ 0 & 1 \\ \end \qquad \sigma \left( u \right) = \begin u & 0 \\ 0 & 1 \\ \end \qquad \sigma \left( u^2 \right) = \begin u^2 & 0 \\ 0 & 1 \\ \end. The group ''C''3 may also be faithfully represented on \mathbb^2 by τ given by: : \tau \left( 1 \right) = \begin 1 & 0 \\ 0 & 1 \\ \end \qquad \tau \left( u \right) = \begin a & -b \\ b & a \\ \end \qquad \tau \left( u^2 \right) = \begin a & b \\ -b & a \\ \end where :a=\text(u)=-\tfrac, \qquad b=\text(u)=\tfrac. A possible representation on \mathbb^3 is given by the set of cyclic permutation matrices ''v'': : \upsilon \left( 1 \right) = \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end \qquad \upsilon \left( u \right) = \begin 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ \end \qquad \upsilon \left( u^2 \right) = \begin 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end . Another example: Let V be the space of homogeneous degree-3 polynomials over the complex numbers in variables x_1, x_2, x_3. Then S_3 acts on V by permutation of the three variables. For instance, (12) sends x_^3 to x_^3.


Reducibility

A subspace ''W'' of ''V'' that is invariant under the
group action In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under ...
is called a '' subrepresentation''. If ''V'' has exactly two subrepresentations, namely the zero-dimensional subspace and ''V'' itself, then the representation is said to be irreducible; if it has a proper subrepresentation of nonzero dimension, the representation is said to be reducible. The representation of dimension zero is considered to be neither reducible nor irreducible, just as the number 1 is considered to be neither composite nor prime. Under the assumption that the characteristic of the field ''K'' does not divide the size of the group, representations of
finite group In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving tra ...
s can be decomposed into a direct sum of irreducible subrepresentations (see Maschke's theorem). This holds in particular for any representation of a finite group over the complex numbers, since the characteristic of the complex numbers is zero, which never divides the size of a group. In the example above, the first two representations given (ρ and σ) are both decomposable into two 1-dimensional subrepresentations (given by span and span), while the third representation (τ) is irreducible.


Generalizations


Set-theoretical representations

A ''set-theoretic representation'' (also known as a group action or ''permutation representation'') of a group ''G'' on a set ''X'' is given by a function ρ : ''G'' → ''X''''X'', the set of functions from ''X'' to ''X'', such that for all ''g''1, ''g''2 in ''G'' and all ''x'' in ''X'': :\rho(1) = x :\rho(g_1 g_2) \rho(g_1) rho(g_2)[x, where 1 is the identity element of ''G''. This condition and the axioms for a group imply that ρ(''g'') is a bijection">.html" ;"title="rho(g_2)[x">rho(g_2)[x, where 1 is the identity element of ''G''. This condition and the axioms for a group imply that ρ(''g'') is a bijection (or permutation) for all ''g'' in ''G''. Thus we may equivalently define a permutation representation to be a
group homomorphism In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) whe ...
from G to the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
S''X'' of ''X''. For more information on this topic see the article on
group action In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under ...
.


Representations in other categories

Every group ''G'' can be viewed as a category with a single object; morphisms in this category are just the elements of ''G''. Given an arbitrary category ''C'', a ''representation'' of ''G'' in ''C'' is a
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
from ''G'' to ''C''. Such a functor selects an object ''X'' in ''C'' and a group homomorphism from ''G'' to Aut(''X''), the automorphism group of ''X''. In the case where ''C'' is Vect''K'', the category of vector spaces over a field ''K'', this definition is equivalent to a linear representation. Likewise, a set-theoretic representation is just a representation of ''G'' in the category of sets. When ''C'' is Ab, the
category of abelian groups In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab. Properties The zero object o ...
, the objects obtained are called ''G''-modules. For another example consider the category of topological spaces, Top. Representations in Top are homomorphisms from ''G'' to the
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
group of a topological space ''X''. Two types of representations closely related to linear representations are: * projective representations: in the category of projective spaces. These can be described as "linear representations up to scalar transformations". *
affine representation In mathematics, an affine representation of a topological Lie group ''G'' on an affine space ''A'' is a continuous ( smooth) group homomorphism from ''G'' to the automorphism group of ''A'', the affine group Aff(''A''). Similarly, an affine re ...
s: in the category of
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relat ...
s. For example, the Euclidean group acts affinely upon
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
.


See also

* Irreducible representations * Character table * Character theory * Molecular symmetry * List of harmonic analysis topics * List of representation theory topics * Representation theory of finite groups *
Semisimple representation In mathematics, specifically in representation theory, a semisimple representation (also called a completely reducible representation) is a linear representation of a group (mathematics), group or an algebra over a field, algebra that is a direct s ...


Notes


References

* . Introduction to representation theory with emphasis on
Lie groups In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas ...
. * Yurii I. Lyubich.
Introduction to the Theory of Banach Representations of Groups
'. Translated from the 1985 Russian-language edition (Kharkov, Ukraine). Birkhäuser Verlag. 1988. {{Authority control Group theory Representation theory