
A satellite navigation or satnav system is a system that uses
satellite
A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scient ...
s to provide autonomous
geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). , four global systems are operational: the
United States
The United States of America (USA), also known as the United States (U.S.) or America, is a country primarily located in North America. It is a federal republic of 50 U.S. state, states and a federal capital district, Washington, D.C. The 48 ...
's
Global Positioning System
The Global Positioning System (GPS) is a satellite-based hyperbolic navigation system owned by the United States Space Force and operated by Mission Delta 31. It is one of the global navigation satellite systems (GNSS) that provide ge ...
(GPS),
Russia
Russia, or the Russian Federation, is a country spanning Eastern Europe and North Asia. It is the list of countries and dependencies by area, largest country in the world, and extends across Time in Russia, eleven time zones, sharing Borders ...
's Global Navigation Satellite System (
GLONASS
GLONASS (, ; ) is a Russian satellite navigation system operating as part of a radionavigation-satellite service. It provides an alternative to Global Positioning System (GPS) and is the second navigational system in operation with global cove ...
),
China
China, officially the People's Republic of China (PRC), is a country in East Asia. With population of China, a population exceeding 1.4 billion, it is the list of countries by population (United Nations), second-most populous country after ...
's
BeiDou Navigation Satellite System (BDS),
and the
European Union's Galileo
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
. Two regional systems are operational: India's
NavIC
Indian Regional Navigation Satellite System (IRNSS), with an operational name of NavIC (acronym for Navigation with Indian Constellation; also, 'sailor' or 'navigator' in Indian languages), is an autonomous regional satellite navigation syste ...
and Japan's
QZSS.
''
Satellite-based augmentation systems'' (SBAS), designed to enhance the accuracy of GNSS,
include Japan's
Quasi-Zenith Satellite System (QZSS),
India's
GAGAN and the European
EGNOS, all of them based on GPS. Previous iterations of the BeiDou navigation system and the present
Indian Regional Navigation Satellite System
Indian Regional Navigation Satellite System (IRNSS), with an operational name of NavIC (acronym for Navigation with Indian Constellation; also, 'sailor' or 'navigator' in Indian languages), is an autonomous regional satellite navigation syste ...
(IRNSS), operationally known as NavIC, are examples of stand-alone operating regional navigation satellite systems (RNSS).
Satellite navigation devices determine their location (
longitude
Longitude (, ) is a geographic coordinate that specifies the east- west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek lett ...
,
latitude
In geography, latitude is a geographic coordinate system, geographic coordinate that specifies the north-south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at t ...
, and
altitude
Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum (geodesy), datum and a point or object. The exact definition and reference datum varies according to the context (e.g., aviation, geometr ...
/
elevation
The elevation of a geographic location (geography), ''location'' is its height above or below a fixed reference point, most commonly a reference geoid, a mathematical model of the Earth's sea level as an equipotential gravitational equipotenti ...
) to high precision (within a few centimeters to meters) using
time signals transmitted along a
line of sight by
radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
from satellites. The system can be used for providing position, navigation or for tracking the position of something fitted with a receiver (satellite tracking). The signals also allow the electronic receiver to calculate the current local time to a high precision, which allows time synchronisation. These uses are collectively known as Positioning, Navigation and Timing (PNT). Satnav systems operate independently of any telephonic or internet reception, though these technologies can enhance the usefulness of the positioning information generated.
Global coverage for each system is generally achieved by a
satellite constellation
A satellite constellation is a group of artificial satellites working together as a system. Unlike a single satellite, a constellation can provide permanent global or near-global pass (spaceflight), coverage, such that at any time everywhere on E ...
of 18–30
medium Earth orbit (MEO) satellites spread between several
orbital planes. The actual systems vary, but all use
orbital inclinations of >50° and
orbital periods of roughly twelve hours (at an altitude of about ).
Classification
GNSS systems that provide enhanced accuracy and integrity monitoring usable for civil navigation are classified as follows:
* is the first generation system and is the combination of existing satellite navigation systems (GPS and GLONASS), with
Satellite Based Augmentation Systems (SBAS) or
Ground Based Augmentation Systems (GBAS).
[ In the United States, the satellite-based component is the Wide Area Augmentation System (WAAS); in Europe, it is the European Geostationary Navigation Overlay Service (EGNOS); in Japan, it is the Multi-Functional Satellite Augmentation System (MSAS); and in India, it is the GPS-aided GEO augmented navigation (GAGAN). Ground-based augmentation is provided by systems like the Local Area Augmentation System (LAAS).][
* is the second generation of systems that independently provide a full civilian satellite navigation system, exemplified by the European Galileo positioning system.][ These systems will provide the accuracy and integrity monitoring necessary for civil navigation; including aircraft. Initially, this system consisted of only Upper L Band frequency sets (L1 for GPS, E1 for Galileo, and G1 for GLONASS). In recent years, GNSS systems have begun activating Lower L Band frequency sets (L2 and L5 for GPS, E5a and E5b for Galileo, and G3 for GLONASS) for civilian use; they feature higher aggregate accuracy and fewer problems with signal reflection.] As of late 2018, a few consumer-grade GNSS devices are being sold that leverage both. They are typically called "Dual band GNSS" or "Dual band GPS" devices.
By their roles in the navigation system, systems can be classified as:
* There are four global satellite navigation systems, currently GPS (United States), GLONASS
GLONASS (, ; ) is a Russian satellite navigation system operating as part of a radionavigation-satellite service. It provides an alternative to Global Positioning System (GPS) and is the second navigational system in operation with global cove ...
(Russian Federation), Beidou (China) and Galileo
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
(European Union).
* Global Satellite-Based Augmentation Systems (SBAS) such as OmniSTAR and StarFire.
* Regional SBAS including WAAS (US), EGNOS (EU), MSAS (Japan), GAGAN (India) and SDCM (Russia).
* Regional Satellite Navigation Systems such as India's NAVIC
Indian Regional Navigation Satellite System (IRNSS), with an operational name of NavIC (acronym for Navigation with Indian Constellation; also, 'sailor' or 'navigator' in Indian languages), is an autonomous regional satellite navigation syste ...
, and Japan's QZSS.
* Continental scale Ground Based Augmentation Systems (GBAS) for example the Australian GRAS and the joint US Coast Guard, Canadian Coast Guard, US Army Corps of Engineers and US Department of Transportation National Differential GPS
Differential Global Positioning Systems (DGPSs) supplement and enhance the positional data available from global navigation satellite systems (GNSSs). A DGPS can increase accuracy of positional data by about a thousandfold, from approximately to ...
(DGPS) service.
* Regional scale GBAS such as CORS networks.
* Local GBAS typified by a single GPS reference station operating Real Time Kinematic (RTK) corrections.
As many of the global GNSS systems (and augmentation systems) use similar frequencies and signals around L1, many "Multi-GNSS" receivers capable of using multiple systems have been produced. While some systems strive to interoperate with GPS as well as possible by providing the same clock, others do not.
History
Ground-based radio navigation
Radio navigation or radionavigation is the application of radio waves to geolocalization, determine a position of an object on the Earth, either the vessel or an obstruction. Like radiolocation, it is a type of Radiodetermination-satellite servi ...
is decades old. The DECCA, LORAN
LORAN (Long Range Navigation) was a hyperbolic navigation, hyperbolic radio navigation system developed in the United States during World War II. It was similar to the UK's Gee (navigation), Gee system but operated at lower frequencies in order ...
, GEE and Omega systems used terrestrial longwave radio transmitter
In electronics and telecommunications, a radio transmitter or just transmitter (often abbreviated as XMTR or TX in technical documents) is an electronic device which produces radio waves with an antenna (radio), antenna with the purpose of sig ...
s which broadcast a radio pulse from a known "master" location, followed by a pulse repeated from a number of "slave" stations. The delay between the reception of the master signal and the slave signals allowed the receiver to deduce the distance to each of the slaves, providing a fix.
The first satellite navigation system was Transit, a system deployed by the US military in the 1960s. Transit's operation was based on the Doppler effect: the satellites travelled on well-known paths and broadcast their signals on a well-known radio frequency
Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the u ...
. The received frequency will differ slightly from the broadcast frequency because of the movement of the satellite with respect to the receiver. By monitoring this frequency shift over a short time interval, the receiver can determine its location to one side or the other of the satellite, and several such measurements combined with a precise knowledge of the satellite's orbit can fix a particular position. Satellite orbital position errors are caused by radio-wave refraction
In physics, refraction is the redirection of a wave as it passes from one transmission medium, medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commo ...
, gravity field changes (as the Earth's gravitational field is not uniform), and other phenomena. A team, led by Harold L Jury of Pan Am Aerospace Division in Florida from 1970 to 1973, found solutions and/or corrections for many error sources. Using real-time data and recursive estimation, the systematic and residual errors were narrowed down to accuracy sufficient for navigation.
Principles
Part of an orbiting satellite's broadcast includes its precise orbital data. Originally, the US Naval Observatory (USNO) continuously observed the precise orbits of these satellites. As a satellite's orbit deviated, the USNO sent the updated information to the satellite. Subsequent broadcasts from an updated satellite would contain its most recent ephemeris.
Modern systems are more direct. The satellite broadcasts a signal that contains orbital data (from which the position of the satellite can be calculated) and the precise time the signal was transmitted. Orbital data include a rough almanac for all satellites to aid in finding them, and a precise ephemeris for this satellite. The orbital ephemeris is transmitted in a data message that is superimposed on a code that serves as a timing reference. The satellite uses an atomic clock
An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwee ...
to maintain synchronization of all the satellites in the constellation. The receiver compares the time of broadcast encoded in the transmission of three (at sea level) or four (which allows an altitude calculation also) different satellites, measuring the time-of-flight to each satellite. Several such measurements can be made at the same time to different satellites, allowing a continual fix to be generated in real time using an adapted version of trilateration: see GNSS positioning calculation for details.
Each distance measurement, regardless of the system being used, places the receiver on a spherical shell centred on the broadcaster, at the measured distance from the broadcaster. By taking several such measurements and then looking for a point where the shells meet, a fix is generated. However, in the case of fast-moving receivers, the position of the receiver moves as signals are received from several satellites. In addition, the radio signals slow slightly as they pass through the ionosphere, and this slowing varies with the receiver's angle to the satellite, because that angle corresponds to the distance which the signal travels through the ionosphere. The basic computation thus attempts to find the shortest directed line tangent to four oblate spherical shells centred on four satellites. Satellite navigation receivers reduce errors by using combinations of signals from multiple satellites and multiple correlators, and then using techniques such as Kalman filter
In statistics and control theory, Kalman filtering (also known as linear quadratic estimation) is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, to produce estimates of unk ...
ing to combine the noisy, partial, and constantly changing data into a single estimate for position, time, and velocity.
Einstein's theory of general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
is applied to GPS time correction, the net result is that time on a GPS satellite clock advances faster than a clock on the ground by about 38 microseconds per day.
Applications
The original motivation for satellite navigation was for military applications. Satellite navigation allows precision in the delivery of weapons to targets, greatly increasing their lethality whilst reducing inadvertent casualties from mis-directed weapons. (See Guided bomb). Satellite navigation also allows forces to be directed and to locate themselves more easily, reducing the fog of war
The fog of war is the uncertainty in situational awareness experienced by participants in military operations. The term seeks to capture the uncertainty regarding one's own capability, adversary capability, and adversary Intent (Military), inten ...
.
Now a global navigation satellite system, such as Galileo
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
, is used to determine users location and the location of other people or objects at any given moment. The range of application of satellite navigation in the future is enormous, including both the public and private sectors across numerous market segments such as science, transport, agriculture, etc.
The ability to supply satellite navigation signals is also the ability to deny their availability. The operator of a satellite navigation system potentially has the ability to degrade or eliminate satellite navigation services over any territory it desires.
Global navigation satellite systems
In order of first launch year:
GPS
First launch year: 1978
The United States' Global Positioning System (GPS) consists of up to 32 medium Earth orbit satellites in six different orbital planes. The exact number of satellites varies as older satellites are retired and replaced. Operational since 1978 and globally available since 1994, GPS is the world's most utilized satellite navigation system.
GLONASS
First launch year: 1982
The formerly Soviet
The Union of Soviet Socialist Republics. (USSR), commonly known as the Soviet Union, was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 until Dissolution of the Soviet ...
, and now Russia
Russia, or the Russian Federation, is a country spanning Eastern Europe and North Asia. It is the list of countries and dependencies by area, largest country in the world, and extends across Time in Russia, eleven time zones, sharing Borders ...
n, ''Global'naya Navigatsionnaya Sputnikovaya Sistema'', (GLObal NAvigation Satellite System or GLONASS), is a space-based satellite navigation system that provides a civilian radionavigation-satellite service and is also used by the Russian Aerospace Defence Forces. GLONASS has full global coverage since 1995 and with 24 active satellites.
BeiDou
First launch year: 2000
BeiDou started as the now-decommissioned Beidou-1, an Asia-Pacific local network on the geostationary orbits. The second generation of the system BeiDou-2 became operational in China in December 2011. The BeiDou-3 system is proposed to consist of 30 MEO satellites and five geostationary satellites (IGSO). A 16-satellite regional version (covering Asia and Pacific area) was completed by December 2012. Global service was completed by December 2018. On 23 June 2020, the BDS-3 constellation deployment is fully completed after the last satellite was successfully launched at the Xichang Satellite Launch Center.
Galileo
First launch year: 2011
The European Union
The European Union (EU) is a supranational union, supranational political union, political and economic union of Member state of the European Union, member states that are Geography of the European Union, located primarily in Europe. The u ...
and European Space Agency
The European Space Agency (ESA) is a 23-member International organization, international organization devoted to space exploration. With its headquarters in Paris and a staff of around 2,547 people globally as of 2023, ESA was founded in 1975 ...
agreed in March 2002 to introduce their own alternative to GPS, called the Galileo positioning system. Galileo became operational on 15 December 2016 (global Early Operational Capability, EOC). At an estimated cost of €10 billion, the system of 30 MEO satellites was originally scheduled to be operational in 2010. The original year to become operational was 2014. The first experimental satellite was launched on 28 December 2005. Galileo is expected to be compatible with the modernized GPS system. The receivers will be able to combine the signals from both Galileo and GPS satellites to greatly increase the accuracy. The full Galileo constellation consists of 24 active satellites, the last of which was launched in December 2021. The main modulation used in Galileo Open Service signal is the Composite Binary Offset Carrier (CBOC) modulation.
Regional navigation satellite systems
NavIC
The NavIC (acronym for Navigation with Indian Constellation) is an autonomous regional satellite navigation system developed by the Indian Space Research Organisation (ISRO). The Indian government approved the project in May 2006. It consists of a constellation of 7 navigational satellites. Three of the satellites are placed in geostationary orbit (GEO) and the remaining 4 in geosynchronous orbit (GSO) to have a larger signal footprint and lower number of satellites to map the region. It is intended to provide an all-weather absolute position accuracy of better than throughout India
India, officially the Republic of India, is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area; the List of countries by population (United Nations), most populous country since ...
and within a region extending approximately around it. An Extended Service Area lies between the primary service area and a rectangle area enclosed by the 30th parallel south to the 50th parallel north and the 30th meridian east to the 130th meridian east, 1,500–6,000 km beyond borders. A goal of complete Indian control has been stated, with the space segment, ground segment and user receivers all being built in India.
The constellation was in orbit as of 2018, and the system was available for public use in early 2018. NavIC provides two levels of service, the "standard positioning service", which will be open for civilian use, and a "restricted service" (an encrypted one) for authorized users (including military). There are plans to expand NavIC system by increasing constellation size from 7 to 11.
India plans to make the NavIC global by adding 24 more MEO satellites. The Global NavIC will be free to use for the global public.
Early BeiDou
The first two generations of China's BeiDou navigation system were designed to provide regional coverage.
Korea
The Korean Positioning System (KPS) is currently in development and expected to be operational by 2035.
Augmentation
GNSS augmentation is a method of improving a navigation system's attributes, such as accuracy, reliability, and availability, through the integration of external information into the calculation process, for example, the Wide Area Augmentation System, the European Geostationary Navigation Overlay Service, the Multi-functional Satellite Augmentation System, Differential GPS
Differential Global Positioning Systems (DGPSs) supplement and enhance the positional data available from global navigation satellite systems (GNSSs). A DGPS can increase accuracy of positional data by about a thousandfold, from approximately to ...
, GPS-aided GEO augmented navigation (GAGAN) and inertial navigation system
An inertial navigation system (INS; also inertial guidance system, inertial instrument) is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning th ...
s.
QZSS
The Quasi-Zenith Satellite System (QZSS) is a four-satellite regional time transfer system and enhancement for GPS covering Japan
Japan is an island country in East Asia. Located in the Pacific Ocean off the northeast coast of the Asia, Asian mainland, it is bordered on the west by the Sea of Japan and extends from the Sea of Okhotsk in the north to the East China Sea ...
and the Asia-Oceania regions. QZSS services were available on a trial basis as of January 12, 2018, and were started in November 2018. The first satellite was launched in September 2010. An independent satellite navigation system (from GPS) with 7 satellites is planned for 2023.
EGNOS
Comparison of systems
Using multiple GNSS systems for user positioning increases the number of visible satellites, improves precise point positioning (PPP) and shortens the average convergence time.
The signal-in-space ranging error (SISRE) in November 2019 were 1.6 cm for Galileo, 2.3 cm for GPS, 5.2 cm for GLONASS and 5.5 cm for BeiDou when using real-time corrections for satellite orbits and clocks. The average SISREs of the BDS-3 MEO, IGSO, and GEO satellites were 0.52 m, 0.90 m and 1.15 m, respectively. Compared to the four major global satellite navigation systems consisting of MEO satellites, the SISRE of the BDS-3 MEO satellites was slightly inferior to 0.4 m of Galileo, slightly superior to 0.59 m of GPS, and remarkably superior to 2.33 m of GLONASS. The SISRE of BDS-3 IGSO was 0.90 m, which was on par with the 0.92 m of QZSS IGSO. However, as the BDS-3 GEO satellites were newly launched and not completely functioning in orbit, their average SISRE was marginally worse than the 0.91 m of the QZSS GEO satellites.
Related techniques
DORIS
Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) is a French precision navigation system. Unlike other GNSS systems, it is based on static emitting stations around the world, the receivers being on satellites, in order to precisely determine their orbital position. The system may be used also for mobile receivers on land with more limited usage and coverage. Used with traditional GNSS systems, it pushes the accuracy of positions to centimetric precision (and to millimetric precision for altimetric application and also allows monitoring very tiny seasonal changes of Earth rotation and deformations), in order to build a much more precise geodesic reference system.
LEO satellites
The two current operational low Earth orbit
A low Earth orbit (LEO) is an geocentric orbit, orbit around Earth with a orbital period, period of 128 minutes or less (making at least 11.25 orbits per day) and an orbital eccentricity, eccentricity less than 0.25. Most of the artificial object ...
(LEO) satellite phone networks are able to track transceiver units with accuracy of a few kilometres using doppler shift calculations from the satellite. The coordinates are sent back to the transceiver unit where they can be read using AT commands or a graphical user interface
A graphical user interface, or GUI, is a form of user interface that allows user (computing), users to human–computer interaction, interact with electronic devices through Graphics, graphical icon (computing), icons and visual indicators such ...
. This can also be used by the gateway to enforce restrictions on geographically bound calling plans.
International regulation
The International Telecommunication Union
The International Telecommunication Union (ITU)In the other common languages of the ITU:
*
* is a list of specialized agencies of the United Nations, specialized agency of the United Nations responsible for many matters related to information ...
(ITU) defines a radionavigation-satellite service (RNSS) as "a radiodetermination-satellite service used for the purpose of radionavigation. This service may also include feeder links necessary for its operation".
RNSS is regarded as a safety-of-life service and an essential part of navigation
Navigation is a field of study that focuses on the process of monitoring and controlling the motion, movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navig ...
which must be protected from interferences.
Aeronautical radionavigation-satellite (ARNSS) is – according to ''Article 1.47'' of the International Telecommunication Union's (ITU) Radio Regulations (RR) – defined as «''A radionavigation service in which earth stations are located on board aircraft''.»
Maritime radionavigation-satellite service (MRNSS) is – according to ''Article 1.45'' of the International Telecommunication Union's (ITU) Radio Regulations (RR) – defined as «''A radionavigation-satellite service in which earth stations are located on board ships''.»
Classification
ITU Radio Regulations (article 1) classifies radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
communication services as:
* Radiodetermination service (article 1.40)
* Radiodetermination-satellite service (article 1.41)
* Radionavigation service (article 1.42)
**Radionavigation-satellite service (article 1.43)
** Maritime radionavigation service (article 1.44)
*** Maritime radionavigation-satellite service (article 1.45)
** Aeronautical radionavigation service (article 1.46)
*** Aeronautical radionavigation-satellite service (article 1.47)
; Examples of RNSS use
*Augmentation system GNSS augmentation
* Automatic Dependent Surveillance–Broadcast
* BeiDou Navigation Satellite System (BDS)
*GALILEO
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
, European GNSS
*Global Positioning System
The Global Positioning System (GPS) is a satellite-based hyperbolic navigation system owned by the United States Space Force and operated by Mission Delta 31. It is one of the global navigation satellite systems (GNSS) that provide ge ...
(GPS), with Differential GPS
Differential Global Positioning Systems (DGPSs) supplement and enhance the positional data available from global navigation satellite systems (GNSSs). A DGPS can increase accuracy of positional data by about a thousandfold, from approximately to ...
(DGPS)
*GLONASS
GLONASS (, ; ) is a Russian satellite navigation system operating as part of a radionavigation-satellite service. It provides an alternative to Global Positioning System (GPS) and is the second navigational system in operation with global cove ...
*NAVIC
Indian Regional Navigation Satellite System (IRNSS), with an operational name of NavIC (acronym for Navigation with Indian Constellation; also, 'sailor' or 'navigator' in Indian languages), is an autonomous regional satellite navigation syste ...
* Quasi-Zenith Satellite System (QZSS)
Frequency allocation
The allocation of radio frequencies is provided according to ''Article 5'' of the ITU Radio Regulations (edition 2012).
To improve harmonisation in spectrum utilisation, most service allocations are incorporated in national Tables of Frequency Allocations and Utilisations within the responsibility of the appropriate national administration. Allocations are:
* primary: indicated by writing in capital letters
* secondary: indicated by small letters
* exclusive or shared utilization: within the responsibility of administrations.
Alternatives
Alternative Positioning, Navigation and Timing (AltPNT) refers to the concept of as an alternative to GNSS. Such alternatives include:
*Inertial navigation system
An inertial navigation system (INS; also inertial guidance system, inertial instrument) is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning th ...
s (INS)
* eLORAN
* Terrain-based navigation (TBN)
* Visual Positioning Systems (VPS)
*LiDAR
Lidar (, also LIDAR, an acronym of "light detection and ranging" or "laser imaging, detection, and ranging") is a method for determining ranging, ranges by targeting an object or a surface with a laser and measuring the time for the reflected li ...
See also
* Acronyms and abbreviations in avionics
* Geoinformatics
* GNSS positioning calculation
* GNSS reflectometry
* GPS spoofing
* GPS-aided geo-augmented navigation
*List of emerging technologies
This is a list of emerging technologies, which are emerging technologies, in-development technical innovations that have significant potential in their applications. The criteria for this list is that the technology must:
# Exist in some way; ...
* Moving map display
* Pseudolite
* Receiver Autonomous Integrity Monitoring
* Software GNSS Receiver
* Space Integrated GPS/INS (SIGI)
* United Kingdom Global Navigation Satellite System
* UNSW School of Surveying and Geospatial Engineering
Notes
References
Further reading
* Office for Outer Space Affairs of the United Nations (2010),
Report on Current and Planned Global and Regional Navigation Satellite Systems and Satellite-based Augmentation Systems
'.
External links
Information on specific GNSS systems
Global Navigation Satellite System Fundamentals
Organizations related to GNSS
* ttp://www.ion.org/meetings/#gnss Institute of Navigation (ION) GNSS Meetings
The International GNSS Service (IGS)
International Global Navigation Satellite Systems Society Inc (IGNSS)
International Earth Rotation and Reference Systems Service (IERS) International GNSS Service (IGS)
US National Executive Committee for Space-Based Positioning, Navigation, and Timing
US National Geodetic Survey
Orbits for the Global Positioning System satellites in the Global Navigation Satellite System
Asia-Pacific Economic Cooperation (APEC) GNSS Implementation Team
Supportive or illustrative sites
(Java applet
Java applets were applet, small applications written in the Java (programming language), Java programming language, or another programming language that Compiled language, compiles to Java bytecode, and delivered to users in the form of Ja ...
) Simulation and graphical depiction of the motion of space vehicles, including DOP computation.
GPS, GNSS, Geodesy and Navigation Concepts in depth
Alternatives to GNSS
USSF Alternative Positioning, Navigation, & Timing Challenge Definition Workshop
Startups map out strategies to augment or backup GPS
Competing with Uncle Sam’s free space offerings
{{DEFAULTSORT:Satellite Navigation
American inventions
Aircraft instruments
Avionics
Geodesy
Maritime communication
Navigational equipment