In
probability theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
and
statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, the geometric standard deviation (GSD) describes how spread out are a set of numbers whose preferred average is the
geometric mean
In mathematics, the geometric mean is a mean or average which indicates a central tendency of a finite collection of positive real numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometri ...
. For such data, it may be preferred to the more usual
standard deviation
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
. Note that unlike the usual ''arithmetic'' standard deviation, the ''geometric'' standard deviation is a multiplicative factor, and thus is
dimensionless
Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that align with another sy ...
, rather than having the same
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
as the input values. Thus, the geometric standard deviation may be more appropriately called geometric SD factor.
[Kirkwood, T.B.L. (1993)]
"Geometric standard deviation - reply to Bohidar"
Drug Dev. Ind. Pharmacy 19(3): 395-6. When using geometric SD factor in conjunction with geometric mean, it should be described as "the range from (the geometric mean divided by the geometric SD factor) to (the geometric mean multiplied by the geometric SD factor), and one cannot add/subtract "geometric SD factor" to/from geometric mean.
Definition
If the geometric mean of a set of numbers
Derivation
If the geometric mean is