In
classical and
quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, geometric phase is a
phase difference acquired over the course of a
cycle, when a system is subjected to cyclic
adiabatic process
An adiabatic process (''adiabatic'' ) is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its Environment (systems), environment. Unlike an isothermal process, an adiabatic process transf ...
es, which results from the geometrical properties of the
parameter space The parameter space is the space of all possible parameter values that define a particular mathematical model. It is also sometimes called weight space, and is often a subset of finite-dimensional Euclidean space.
In statistics, parameter spaces a ...
of the
Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
.
The phenomenon was independently discovered by
S. Pancharatnam (1956), in classical optics and by
H. C. Longuet-Higgins (1958)
[See page 12] in molecular physics; it was generalized by
Michael Berry in (1984).
It is also known as the Pancharatnam–Berry phase, Pancharatnam phase, or Berry phase.
It can be seen in the
conical intersection of
potential energy surface
A potential energy surface (PES) or energy landscape describes the energy of a Physical system, system, especially a collection of atoms, in terms of certain Parameter, parameters, normally the positions of the atoms. The Surface (mathematics), ...
s
[ and in the ]Aharonov–Bohm effect
The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanics, quantum-mechanical phenomenon in which an electric charge, electrically charged point particle, particle is affected by an elect ...
. Geometric phase around the conical intersection involving the ground electronic state of the C6H3F3+ molecular ion is discussed on pages 385–386 of the textbook by Bunker and Jensen. In the case of the Aharonov–Bohm effect, the adiabatic parameter is the magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
enclosed by two interference paths, and it is cyclic in the sense that these two paths form a loop. In the case of the conical intersection, the adiabatic parameters are the molecular coordinates. Apart from quantum mechanics, it arises in a variety of other wave
In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from List of types of equilibrium, equilibrium) of one or more quantities. ''Periodic waves'' oscillate repeatedly about an equilibrium ...
systems, such as classical optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
. As a rule of thumb, it can occur whenever there are at least two parameters characterizing a wave in the vicinity of some sort of singularity or hole in the topology; two parameters are required because either the set of nonsingular states will not be simply connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving ...
, or there will be nonzero holonomy
In differential geometry, the holonomy of a connection on a smooth manifold is the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. Holonomy is a general geometrical consequence ...
.
Waves are characterized by amplitude
The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
and phase, and may vary as a function of those parameters. The geometric phase occurs when both parameters are changed simultaneously but very slowly (adiabatically), and eventually brought back to the initial configuration. In quantum mechanics, this could involve rotations but also translations of particles, which are apparently undone at the end. One might expect that the waves in the system return to the initial state, as characterized by the amplitudes and phases (and accounting for the passage of time). However, if the parameter excursions correspond to a loop instead of a self-retracing back-and-forth variation, then it is possible that the initial and final states differ in their phases. This phase difference is the geometric phase, and its occurrence typically indicates that the system's parameter dependence is singular
Singular may refer to:
* Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms
* Singular or sounder, a group of boar, see List of animal names
* Singular (band), a Thai jazz pop duo
*'' Singula ...
(its state is undefined) for some combination of parameters.
To measure the geometric phase in a wave system, an interference
Interference is the act of interfering, invading, or poaching. Interference may also refer to:
Communications
* Interference (communication), anything which alters, modifies, or disrupts a message
* Adjacent-channel interference, caused by extra ...
experiment
An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs whe ...
is required. The Foucault pendulum
The Foucault pendulum or Foucault's pendulum is a simple device named after French physicist Léon Foucault, conceived as an experiment to demonstrate the Earth's rotation. If a long and heavy pendulum suspended from the high roof above a circu ...
is an example from classical mechanics
Classical mechanics is a Theoretical physics, physical theory describing the motion of objects such as projectiles, parts of Machine (mechanical), machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics inv ...
that is sometimes used to illustrate the geometric phase. This mechanics analogue of the geometric phase is known as the Hannay angle.
Berry phase in quantum mechanics
In a quantum system at the ''n''-th eigenstate
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system re ...
, an adiabatic evolution of the Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
sees the system remain in the ''n''-th eigenstate of the Hamiltonian, while also obtaining a phase factor. The phase obtained has a contribution from the state's time evolution and another from the variation of the eigenstate with the changing Hamiltonian. The second term corresponds to the Berry phase, and for non-cyclical variations of the Hamiltonian it can be made to vanish by a different choice of the phase associated with the eigenstates of the Hamiltonian at each point in the evolution.
However, if the variation is cyclical, the Berry phase cannot be cancelled; it is invariant and becomes an observable property of the system. By reviewing the proof of the adiabatic theorem
The adiabatic theorem is a concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928), was stated as follows:
:''A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it sl ...
given by Max Born
Max Born (; 11 December 1882 – 5 January 1970) was a German-British theoretical physicist who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics, and supervised the work of a ...
and Vladimir Fock, in Zeitschrift für Physik
''Zeitschrift für Physik'' (English: ''Journal for Physics'') is a defunct series of German peer-reviewed physics journals established in 1920 by Springer Berlin Heidelberg. The series ended publication in 1997, when it merged with other journal ...
51, 165 (1928), we could characterize the whole change of the adiabatic process into a phase term. Under the adiabatic approximation, the coefficient of the ''n''-th eigenstate under adiabatic process is given by
where is the Berry's phase with respect to parameter ''t''. Changing the variable ''t'' into generalized parameters, we could rewrite the Berry's phase into
where parametrizes the cyclic adiabatic process. Note that the normalization of implies that the integrand is imaginary, so that