Fundamental Physics
   HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, the fundamental interactions or fundamental forces are interactions in nature that appear not to be reducible to more basic interactions. There are four fundamental interactions known to exist: *
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
*
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
*
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
*
strong interaction In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
The gravitational and electromagnetic interactions produce long-range forces whose effects can be seen directly in everyday life. The strong and weak interactions produce forces at subatomic scales and govern nuclear interactions inside
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s. Some scientists hypothesize that a
fifth force In physics, a fifth force refers to a hypothetical fundamental interaction (also known as fundamental force) beyond the four known interactions in nature: gravitational, electromagnetic, strong nuclear, and weak nuclear forces. Some speculativ ...
might exist, but these hypotheses remain speculative. Each of the known fundamental interactions can be described mathematically as a ''
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''. The gravitational interaction is attributed to the
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
of
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
, described by Einstein's
general theory of relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physi ...
. The other three are discrete
quantum fields In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatom ...
, and their interactions are mediated by
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a c ...
s described by the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
of
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
. Within the Standard Model, the strong interaction is carried by a particle called the
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
and is responsible for
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s binding together to form
hadron In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
s, such as
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s and
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s. As a residual effect, it creates the
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both ...
that binds the latter particles to form
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. Aft ...
. The weak interaction is carried by particles called
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
, and also acts on the nucleus of
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s, mediating
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. The electromagnetic force, carried by the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
, creates
electric Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s, which are responsible for the attraction between orbital
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s and atomic nuclei which holds atoms together, as well as
chemical bonding A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons as in ...
and
electromagnetic wave In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ...
s, including
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
, and forms the basis for electrical technology. Although the electromagnetic force is far stronger than gravity, it tends to cancel itself out within large objects, so over large (astronomical) distances gravity tends to be the dominant force, and is responsible for holding together the large scale structures in the universe, such as planets, stars, and galaxies. The historical success of models that show relationships between fundamental interactions have led to efforts to go beyond the Standard Model and combine all four forces in to a
theory of everything A theory of everything (TOE), final theory, ultimate theory, unified field theory, or master theory is a hypothetical singular, all-encompassing, coherent theoretical physics, theoretical framework of physics that fully explains and links togeth ...
.


History


Classical theory

In his 1687 theory,
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
postulated space as an infinite and unalterable physical structure existing before, within, and around all objects while their states and relations unfold at a constant pace everywhere, thus
absolute space and time Absolute space and time is a concept in physics and philosophy about the properties of the universe. In physics, absolute space and time may be a preferred frame. Early concept A version of the concept of absolute space (in the sense of a prefe ...
. Inferring that all objects bearing mass approach at a constant rate, but collide by impact proportional to their masses, Newton inferred that matter exhibits an attractive force. His
law of universal gravitation Newton's law of universal gravitation describes gravity as a force by stating that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the s ...
implied there to be instant interaction among all objects. As conventionally interpreted, Newton's theory of motion modelled a ''
central force In classical mechanics, a central force on an object is a force that is directed towards or away from a point called center of force. \mathbf(\mathbf) = F( \mathbf ) where F is a force vector, ''F'' is a scalar valued force function (whose abso ...
'' without a communicating medium. Thus Newton's theory violated the tradition, going back to Descartes, that there should be no
action at a distance Action at a distance is the concept in physics that an object's motion (physics), motion can be affected by another object without the two being in Contact mechanics, physical contact; that is, it is the concept of the non-local interaction of ob ...
. Conversely, during the 1820s, when explaining magnetism,
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English chemist and physicist who contributed to the study of electrochemistry and electromagnetism. His main discoveries include the principles underlying electromagnetic inducti ...
inferred a ''field'' filling space and transmitting that force. Faraday conjectured that ultimately, all forces unified into one. In 1873,
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
unified electricity and magnetism as effects of an electromagnetic field whose third consequence was light, travelling at constant speed in vacuum. If his electromagnetic field theory held true in all inertial frames of reference, this would contradict Newton's theory of motion, which relied on
Galilean relativity Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his ''Dialogue Concerning the Two Chief World Systems'' using t ...
. If, instead, his field theory only applied to reference frames at rest relative to a mechanical
luminiferous aether Luminiferous aether or ether (''luminiferous'' meaning 'light-bearing') was the postulated Transmission medium, medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empt ...
—presumed to fill all space whether within matter or in vacuum and to manifest the electromagnetic field—then it could be reconciled with Galilean relativity and Newton's laws. (However, such a "Maxwell aether" was later disproven; Newton's laws did, in fact, have to be replaced.)


Standard Model

The Standard Model of particle physics was developed throughout the latter half of the 20th century. In the Standard Model, the electromagnetic, strong, and weak interactions associate with
elementary particles In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a con ...
, whose behaviours are modelled in
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
(QM). For predictive success with QM's
probabilistic Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
outcomes,
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
conventionally models QM
events Event may refer to: Gatherings of people * Ceremony, an event of ritual significance, performed on a special occasion * Convention (meeting), a gathering of individuals engaged in some common interest * Event management, the organization of eve ...
across a field set to
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Ele ...
, altogether relativistic quantum field theory (QFT). Force particles, called
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge ...
s—''force carriers'' or '' messenger particles'' of underlying fields—interact with matter particles, called
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s. Everyday matter is atoms, composed of three fermion types: up-quarks and down-quarks constituting, as well as electrons orbiting, the atom's nucleus. Atoms interact, form
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s, and manifest further properties through electromagnetic interactions among their electrons absorbing and emitting photons, the electromagnetic field's force carrier, which if unimpeded traverse potentially infinite distance. Electromagnetism's QFT is
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
(QED). The force carriers of the weak interaction are the massive
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
. Electroweak theory (EWT) covers both electromagnetism and the weak interaction. At the high temperatures shortly after the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
, the weak interaction, the electromagnetic interaction, and the
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particl ...
were originally mixed components of a different set of ancient pre-symmetry-breaking fields. As the early universe cooled, these fields
split Split(s) or The Split may refer to: Places * Split, Croatia, the largest coastal city in Croatia * Split Island, Canada, an island in the Hudson Bay * Split Island, Falkland Islands * Split Island, Fiji, better known as Hạfliua Arts, enter ...
into the long-range electromagnetic interaction, the short-range weak interaction, and the Higgs boson. In the
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the Mass generation, generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles ...
, the Higgs field manifests Higgs bosons that interact with some quantum particles in a way that endows those particles with mass. The strong interaction, whose force carrier is the
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
, traversing minuscule distance among quarks, is modeled in
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
(QCD). EWT, QCD, and the Higgs mechanism comprise
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
'
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
(SM). Predictions are usually made using calculational approximation methods, although such
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
is inadequate to model some experimental observations (for instance
bound state A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them. In quantum physics, a bound state is a quantum state of a ...
s and
soliton In mathematics and physics, a soliton is a nonlinear, self-reinforcing, localized wave packet that is , in that it preserves its shape while propagating freely, at constant velocity, and recovers it even after collisions with other such local ...
s). Still, physicists widely accept the Standard Model as science's most experimentally confirmed theory.
Beyond the Standard Model Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neut ...
, some theorists work to unite the electroweak and
strong Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United ...
interactions within a
Grand Unified Theory A Grand Unified Theory (GUT) is any Mathematical model, model in particle physics that merges the electromagnetism, electromagnetic, weak interaction, weak, and strong interaction, strong fundamental interaction, forces (the three gauge theory, ...
(GUT). Some attempts at GUTs hypothesize "shadow" particles, such that every known matter particle associates with an undiscovered force particle, and vice versa, altogether
supersymmetry Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
(SUSY). Other theorists seek to quantize the gravitational field by the modelling behaviour of its hypothetical force carrier, the
graviton In theories of quantum gravity, the graviton is the hypothetical elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with re ...
and achieve quantum gravity (QG). One approach to QG is
loop quantum gravity Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based direc ...
(LQG). Still other theorists seek both QG and GUT within one framework, reducing all four fundamental interactions to a
Theory of Everything A theory of everything (TOE), final theory, ultimate theory, unified field theory, or master theory is a hypothetical singular, all-encompassing, coherent theoretical physics, theoretical framework of physics that fully explains and links togeth ...
(ToE). The most prevalent aim at a ToE is
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
, although to model matter particles, it added
SUSY Supersymmetry is a theoretical framework in physics that suggests the existence of a symmetry between particles with integer spin (''bosons'') and particles with half-integer spin (''fermions''). It proposes that for every known particle, there ...
to force particles—and so, strictly speaking, became
superstring theory Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string t ...
. Multiple, seemingly disparate superstring theories were unified on a backbone,
M-theory In physics, M-theory is a theory that unifies all Consistency, consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1 ...
. Theories beyond the Standard Model remain highly speculative, lacking great experimental support.


Overview of the fundamental interactions

In the
conceptual model The term conceptual model refers to any model that is formed after a wikt:concept#Noun, conceptualization or generalization process. Conceptual models are often abstractions of things in the real world, whether physical or social. Semantics, Semant ...
of fundamental interactions,
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
consists of
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s, which carry
properties Property is the ownership of land, resources, improvements or other tangible objects, or intellectual property. Property may also refer to: Philosophy and science * Property (philosophy), in philosophy and logic, an abstraction characterizing an ...
called
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
s and
spin Spin or spinning most often refers to: * Spin (physics) or particle spin, a fundamental property of elementary particles * Spin quantum number, a number which defines the value of a particle's spin * Spinning (textiles), the creation of yarn or thr ...
± (intrinsic
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
±, where ħ is the
reduced Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
). They attract or repel each other by exchanging
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s. The interaction of any pair of fermions in perturbation theory can then be modelled thus: : Two fermions go in → ''interaction'' by boson exchange → two changed fermions go out. The exchange of bosons always carries
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
and
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
between the fermions, thereby changing their speed and direction. The exchange may also transport a charge between the fermions, changing the charges of the fermions in the process (e.g., turn them from one type of fermion to another). Since bosons carry one unit of angular momentum, the fermion's spin direction will flip from + to − (or vice versa) during such an exchange (in units of the
reduced Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
). Since such interactions result in a change in momentum, they can give rise to classical Newtonian
force In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
s. In quantum mechanics, physicists often use the terms "force" and "interaction" interchangeably; for example, the weak interaction is sometimes referred to as the "weak force". According to the present understanding, there are four fundamental interactions or forces:
gravitation In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
, electromagnetism, the
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
, and the strong interaction. Their magnitude and behaviour vary greatly, as described in the table below. Modern physics attempts to explain every observed
physical phenomenon A phenomenon ( phenomena), sometimes spelled phaenomenon, is an observable event. The term came into its modern philosophical usage through Immanuel Kant, who contrasted it with the noumenon, which ''cannot'' be directly observed. Kant was he ...
by these fundamental interactions. Moreover, reducing the number of different interaction types is seen as desirable. Two cases in point are the
unification Unification or unification theory may refer to: Computer science * Unification (computer science), the act of identifying two terms with a suitable substitution * Unification (graph theory), the computation of the most general graph that subs ...
of: *
Electric Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and
magnetic force Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, m ...
into electromagnetism; * The
electromagnetic interaction In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
and the weak interaction into the electroweak interaction; see below. Both magnitude ("relative strength") and "range" of the associated potential, as given in the table, are meaningful only within a rather complex theoretical framework. The table below lists properties of a conceptual scheme that remains the subject of ongoing research. The modern (perturbative)
quantum mechanical Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
view of the fundamental forces other than gravity is that particles of matter (
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s) do not directly interact with each other, but rather carry a charge, and exchange
virtual particles A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emer ...
(
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge ...
s), which are the interaction carriers or force mediators. For example, photons mediate the interaction of
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
s, and gluons mediate the interaction of
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; ho ...
s. The full theory includes perturbations beyond simply fermions exchanging bosons; these additional perturbations can involve bosons that exchange fermions, as well as the creation or destruction of particles: see
Feynman diagrams In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced ...
for examples.


Interactions


Gravity

''Gravitation'' is the weakest of the four interactions at the atomic scale, where electromagnetic interactions dominate. Gravitation is the most important of the four fundamental forces for astronomical objects over astronomical distances for two reasons. First, gravitation has an infinite effective range, like electromagnetism but unlike the strong and weak interactions. Second, gravity always attracts and never repels; in contrast, astronomical bodies tend toward a near-neutral net electric charge, such that the attraction to one type of charge and the repulsion from the opposite charge mostly cancel each other out. Even though electromagnetism is far stronger than gravitation, electrostatic attraction is not relevant for large celestial bodies, such as planets, stars, and galaxies, simply because such bodies contain equal numbers of protons and electrons and so have a net electric charge of zero. Nothing "cancels" gravity, since it is only attractive, unlike electric forces which can be attractive or repulsive. On the other hand, all objects having mass are subject to the gravitational force, which only attracts. Therefore, only gravitation matters on the large-scale structure of the universe. The long range of gravitation makes it responsible for such large-scale phenomena as the structure of galaxies and
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s and, being only attractive, it slows down the
expansion of the universe The expansion of the universe is the increase in proper length, distance between Gravitational binding energy, gravitationally unbound parts of the observable universe with time. It is an intrinsic and extrinsic properties (philosophy), intrins ...
. Gravitation also explains astronomical phenomena on more modest scales, such as
planet A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
ary
orbit In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an ...
s, as well as everyday experience: objects fall; heavy objects act as if they were glued to the ground, and animals can only jump so high. Gravitation was the first interaction to be described mathematically. In ancient times,
Aristotle Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, a ...
hypothesized that objects of different masses fall at different rates. During the
Scientific Revolution The Scientific Revolution was a series of events that marked the emergence of History of science, modern science during the early modern period, when developments in History of mathematics#Mathematics during the Scientific Revolution, mathemati ...
,
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
experimentally determined that this hypothesis was wrong under certain circumstances—neglecting the friction due to air resistance and buoyancy forces if an atmosphere is present (e.g. the case of a dropped air-filled balloon vs a water-filled balloon), all objects accelerate toward the Earth at the same rate. Isaac Newton's
law of Universal Gravitation Newton's law of universal gravitation describes gravity as a force by stating that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the s ...
(1687) was a good approximation of the behaviour of gravitation. Present-day understanding of gravitation stems from Einstein's
General Theory of Relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physi ...
of 1915, a more accurate (especially for
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
masses and distances) description of gravitation in terms of the
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
of
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
. Merging general relativity and
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
(or
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
) into a more general theory of
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
is an area of active research. It is hypothesized that gravitation is mediated by a massless spin-2 particle called the
graviton In theories of quantum gravity, the graviton is the hypothetical elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with re ...
. Although general relativity has been experimentally confirmed (at least for weak fields, i.e. not black holes) on all but the smallest scales, there are
alternatives to general relativity Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory o ...
. These theories must reduce to general relativity in some limit, and the focus of observational work is to establish limits on what deviations from general relativity are possible. Proposed
extra dimensions In physics, extra dimensions or extra-dimensional spaces are proposed as additional space or time dimensions beyond the (3 + 1) typical of observed spacetime — meaning 5-dimensional or higher. such as the first attempts based on the K ...
could explain why the gravity force is so weak.


Electroweak interaction

Electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
and weak interaction appear to be very different at everyday low energies. They can be modeled using two different theories. However, above unification energy, on the order of 100
GeV In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When us ...
, they would merge into a single electroweak force. The electroweak theory is very important for modern
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
, particularly on how the
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
evolved. This is because shortly after the Big Bang, when the temperature was still above approximately 1015  K, the electromagnetic force and the weak force were still merged as a combined electroweak force. For contributions to the unification of the weak and electromagnetic interaction between
elementary particles In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a con ...
, Abdus Salam, Sheldon Glashow and Steven Weinberg were awarded the
Nobel Prize in Physics The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
in 1979.


Electromagnetism

Electromagnetism is the force that acts between
electrically charged Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
particles. This phenomenon includes the
electrostatic force Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the ''electrostatic f ...
acting between charged particles at rest, and the combined effect of electric and
magnetic Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, m ...
forces acting between charged particles moving relative to each other. Electromagnetism has an infinite range, as gravity does, but is vastly stronger. It is the force that binds electrons to atoms, and it holds molecules together. It is responsible for everyday phenomena like
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
,
magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
s,
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
, and
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
. Electromagnetism fundamentally determines all macroscopic, and many atomic-level, properties of the
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s. In a four kilogram (~1 gallon) jug of water, there is
4000 \ \mbox\,\rm_2 \rm \cdot \frac \cdot \frac \cdot \frac = 2.1 \times 10^ C \ \, \
of total electron charge. Thus, if we place two such jugs a meter apart, the electrons in one of the jugs repel those in the other jug with a force of
\frac = 4.1 \times 10^ \mathrm.
This force is many times larger than the weight of the planet Earth. The
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. Aft ...
in one jug also repel those in the other with the same force. However, these repulsive forces are canceled by the attraction of the electrons in jug A with the nuclei in jug B and the attraction of the nuclei in jug A with the electrons in jug B, resulting in no net force. Electromagnetic forces are tremendously stronger than gravity, but tend to cancel out so that for astronomical-scale bodies, gravity dominates. Electrical and magnetic phenomena have been observed since ancient times, but it was only in the 19th century
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
discovered that electricity and magnetism are two aspects of the same fundamental interaction. By 1864,
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
had rigorously quantified this unified interaction. Maxwell's theory, restated using
vector calculus Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
, is the classical theory of electromagnetism, suitable for most technological purposes. The constant
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
in vacuum (customarily denoted with a lowercase letter ') can be derived from Maxwell's equations, which are consistent with the theory of special relativity.
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
's 1905 theory of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Ele ...
, however, which follows from the observation that the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
is constant no matter how fast the observer is moving, showed that the theoretical result implied by Maxwell's equations has profound implications far beyond electromagnetism on the very nature of time and space. In another work that departed from classical electro-magnetism, Einstein also explained the
photoelectric effect The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physi ...
by utilizing Max Planck's discovery that light was transmitted in 'quanta' of specific energy content based on the frequency, which we now call
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s. Starting around 1927,
Paul Dirac Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
combined
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
with the relativistic theory of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
. Further work in the 1940s, by
Richard Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of t ...
,
Freeman Dyson Freeman John Dyson (15 December 1923 – 28 February 2020) was a British-American theoretical physics, theoretical physicist and mathematician known for his works in quantum field theory, astrophysics, random matrix, random matrices, math ...
,
Julian Schwinger Julian Seymour Schwinger (; February 12, 1918 – July 16, 1994) was a Nobel Prize-winning American theoretical physicist. He is best known for his work on quantum electrodynamics (QED), in particular for developing a relativistically invariant ...
, and Sin-Itiro Tomonaga, completed this theory, which is now called
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
, the revised theory of electromagnetism. Quantum electrodynamics and quantum mechanics provide a theoretical basis for electromagnetic behavior such as
quantum tunneling In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
, in which a certain percentage of electrically charged particles move in ways that would be impossible under the classical electromagnetic theory, that is necessary for everyday electronic devices such as
transistors A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
to function.


Weak interaction

The ''weak interaction'' or ''weak nuclear force'' is responsible for some nuclear phenomena such as
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
. Electromagnetism and the weak force are now understood to be two aspects of a unified
electroweak interaction In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two force ...
— this discovery was the first step toward the unified theory known as the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
. In the theory of the electroweak interaction, the carriers of the weak force are the massive
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge ...
s called the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
. The weak interaction is the only known interaction that does not conserve parity; it is left–right asymmetric. The weak interaction even violates CP symmetry but does conserve CPT.


Strong interaction

The ''strong interaction'', or ''strong nuclear force'', is the most complicated interaction, mainly because of the way it varies with distance. The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 10−15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At distances less than 0.7 fm, the nuclear force becomes repulsive. This repulsive component is responsible for the physical size of nuclei, since the nucleons can come no closer than the force allows. After the nucleus was discovered in 1908, it was clear that a new force, today known as the nuclear force, was needed to overcome the
electrostatic repulsion Electrostatics is a branch of physics that studies slow-moving or stationary electric charges. Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word (), meani ...
, a manifestation of electromagnetism, of the positively charged protons. Otherwise, the nucleus could not exist. Moreover, the force had to be strong enough to squeeze the protons into a volume whose diameter is about 10−15 m, much smaller than that of the entire atom. From the short range of this force,
Hideki Yukawa Hideki Yukawa (; ; 23 January 1907 – 8 September 1981) was a Japanese theoretical physicist who received the Nobel Prize in Physics in 1949 "for his prediction of the existence of mesons on the basis of theoretical work on nuclear forces". B ...
predicted that it was associated with a massive force particle, whose mass is approximately 100 MeV. The 1947 discovery of the
pion In particle physics, a pion (, ) or pi meson, denoted with the Greek alphabet, Greek letter pi (letter), pi (), is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the ...
ushered in the modern era of particle physics. Hundreds of hadrons were discovered from the 1940s to 1960s, and an extremely complicated theory of hadrons as strongly interacting particles was developed. Most notably: * The pions were understood to be oscillations of vacuum condensates; * Jun John Sakurai proposed the rho and omega
vector boson In particle physics, a vector boson is a boson whose spin equals one. Vector bosons that are also elementary particles are gauge bosons, the force carriers of fundamental interactions. Some composite particles are vector bosons, for instance any ...
s to be force carrying particles for approximate symmetries of
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. Isospin is also known as isobaric spin or isotopic spin. Isospin symmetry is a subset of the flavour symmetr ...
and
hypercharge In particle physics, the hypercharge (a portmanteau of hyperonic and charge (physics), charge) ''Y'' of a subatomic particle, particle is a quantum number conserved under the strong interaction. The concept of hypercharge provides a single charg ...
; * Geoffrey Chew, Edward K. Burdett and
Steven Frautschi Steven C. Frautschi (; born December 6, 1933) is an American theoretical physicist, currently professor of physics emeritus at the California Institute of Technology (Caltech). He is known principally for his contributions to the bootstrap theory ...
grouped the heavier hadrons into families that could be understood as vibrational and rotational excitations of
strings String or strings may refer to: *String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * ''Strings'' (1991 film), a Canadian anim ...
. While each of these approaches offered insights, no approach led directly to a fundamental theory.
Murray Gell-Mann Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American theoretical physicist who played a preeminent role in the development of the theory of elementary particles. Gell-Mann introduced the concept of quarks as the funda ...
along with
George Zweig George Zweig (; born May 30, 1937) is an American physicist of Russian-Jewish origin. He was trained as a particle physicist under Richard Feynman. He introduced, independently of Murray Gell-Mann, the quark model (although he named it "aces"). ...
first proposed fractionally charged quarks in 1961. Throughout the 1960s, different authors considered theories similar to the modern fundamental theory of quantum chromodynamics (QCD) as simple models for the interactions of quarks. The first to hypothesize the gluons of QCD were
Moo-Young Han Moo-Young Han (November 30, 1934 – May 15, 2016) was a South Korean-born American physicist. He was a professor of physics at Duke University. Along with Yoichiro Nambu of the University of Chicago, he is credited with introducing the SU(3) sym ...
and
Yoichiro Nambu was a Japanese-American physicist and professor at the University of Chicago. Known for his groundbreaking contributions to theoretical physics, Nambu was the originator of the theory of spontaneous symmetry breaking, a concept that revoluti ...
, who introduced the quark color charge. Han and Nambu hypothesized that it might be associated with a force-carrying field. At that time, however, it was difficult to see how such a model could permanently confine quarks. Han and Nambu also assigned each quark color an integer electrical charge, so that the quarks were fractionally charged only on average, and they did not expect the quarks in their model to be permanently confined. In 1971, Murray Gell-Mann and Harald Fritzsch proposed that the Han/Nambu color gauge field was the correct theory of the short-distance interactions of fractionally charged quarks. A little later,
David Gross David Jonathan Gross (; born February 19, 1941) is an American theoretical physicist and string theorist. Along with Frank Wilczek and David Politzer, he was awarded the 2004 Nobel Prize in Physics for their discovery of asymptotic freedom. ...
,
Frank Wilczek Frank Anthony Wilczek ( or ; born May 15, 1951) is an American theoretical physicist, mathematician and Nobel laureate. He is the Herman Feshbach Professor of Physics at the Massachusetts Institute of Technology (MIT), Founding Director ...
, and
David Politzer Hugh David Politzer (; born August 31, 1949) is an American theoretical physicist Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and pred ...
discovered that this theory had the property of
asymptotic freedom In quantum field theory, asymptotic freedom is a property of some gauge theory, gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases. (A ...
, allowing them to make contact with experimental evidence. They concluded that QCD was the complete theory of the strong interactions, correct at all distance scales. The discovery of asymptotic freedom led most physicists to accept QCD since it became clear that even the long-distance properties of the strong interactions could be consistent with experiment if the quarks are permanently confined: the strong force increases indefinitely with distance, trapping quarks inside the hadrons. Assuming that quarks are confined,
Mikhail Shifman Mikhail "Misha" Arkadyevich Shifman (; born 4 April 1949) is a theoretical physicist (high energy physics), formerly at the Institute for Theoretical and Experimental Physics, Moscow, Ida Cohen Fine Professor of Theoretical Physics, William I. ...
,
Arkady Vainshtein Arkady Vainshtein (; born 24 February 1942) is a Russian and American Professor Emeritus of Theoretical physics who was awarded Pomeranchuk Prize (2005) and Sakurai Prize (1999) for theoretical physics. Biography Vainshtein was born on 24 Februar ...
and Valentine Zakharov were able to compute the properties of many low-lying hadrons directly from QCD, with only a few extra parameters to describe the vacuum. In 1980, Kenneth G. Wilson published computer calculations based on the first principles of QCD, establishing, to a level of confidence tantamount to certainty, that QCD will confine quarks. Since then, QCD has been the established theory of strong interactions. QCD is a theory of fractionally charged quarks interacting by means of 8 bosonic particles called gluons. The gluons also interact with each other, not just with the quarks, and at long distances the lines of force collimate into strings, loosely modeled by a linear potential, a constant attractive force. In this way, the mathematical theory of QCD not only explains how quarks interact over short distances but also the string-like behavior, discovered by Chew and Frautschi, which they manifest over longer distances.


Higgs interaction

Conventionally, the Higgs interaction is not counted among the four fundamental forces. Nonetheless, although not a
gauge Gauge ( ) may refer to: Measurement * Gauge (instrument), any of a variety of measuring instruments * Gauge (firearms) * Wire gauge, a measure of the size of a wire ** American wire gauge, a common measure of nonferrous wire diameter, especia ...
interaction nor generated by any
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definit ...
symmetry, the
Higgs field The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particl ...
's cubic
Yukawa coupling In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between particles according to the Yukawa potential. Specifically, it is between a scalar field (or pseudoscalar field) \ \phi\ and a Dirac ...
produces a weakly attractive fifth interaction. After
spontaneous symmetry breaking Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion o ...
via the
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the Mass generation, generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles ...
, Yukawa terms remain of the form : \frac \bar \phi' \psi = \frac \bar \phi' \psi, with Yukawa coupling \lambda_i, particle mass m_i (in eV), and Higgs
vacuum expectation value In quantum field theory, the vacuum expectation value (VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. One of the most widely used exa ...
. Hence coupled particles can exchange a virtual Higgs boson, yielding classical potentials of the form : V(r) = - \frac \frac e^, with Higgs mass . Because the
reduced Compton wavelength The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It was introduced by Arthur Compton in 1923 ...
of the
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particl ...
is so small (, comparable to the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
), this potential has an effective range of a few attometers. Between two electrons, it begins roughly 1011 times weaker than the
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
, and grows exponentially weaker at non-zero distances.


Beyond the Standard Model

The fundamental forces may become unified into a single force at very high energies and on a minuscule scale, the
Planck scale In particle physics and physical cosmology, Planck units are a system of units of measurement defined exclusively in terms of four universal physical constants: '' c'', '' G'', '' ħ'', and ''k''B (described further below). Expressing one of ...
.
Particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s cannot produce the enormous energies required to experimentally probe this regime. The weak and electromagnetic forces have already been unified with the
electroweak theory In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forc ...
of
Sheldon Glashow Sheldon Lee Glashow (, ; born December 5, 1932) is a Nobel Prize-winning American theoretical physicist. He is the Metcalf Professor of Mathematics and Physics at Boston University, and a Eugene Higgins Professor of Physics, emeritus, at Harv ...
,
Abdus Salam Mohammad Abdus Salam Salam adopted the forename "Mohammad" in 1974 in response to the anti-Ahmadiyya decrees in Pakistan, similarly he grew his beard. (; ; 29 January 192621 November 1996) was a Pakistani theoretical physicist. He shared the 1 ...
, and
Steven Weinberg Steven Weinberg (; May 3, 1933 – July 23, 2021) was an American theoretical physicist and Nobel laureate in physics for his contributions with Abdus Salam and Sheldon Glashow to the unification of the weak force and electromagnetic inter ...
, for which they received the 1979 Nobel Prize in physics. Numerous theoretical efforts have been made to systematize the existing four fundamental interactions on the model of electroweak unification.
Grand Unified Theories A Grand Unified Theory (GUT) is any model in particle physics that merges the electromagnetic, weak, and strong forces (the three gauge interactions of the Standard Model) into a single force at high energies. Although this unified force has ...
(GUTs) are proposals to show that each of the three fundamental interactions described by the Standard Model is a different manifestation of a single interaction with
symmetries Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
that break down and create separate interactions below some extremely high level of energy. GUTs are also expected to predict some of the relationships between constants of nature that the Standard Model treats as unrelated and gauge coupling unification for the relative strengths of the electromagnetic, weak, and strong forces. A so-called
theory of everything A theory of everything (TOE), final theory, ultimate theory, unified field theory, or master theory is a hypothetical singular, all-encompassing, coherent theoretical physics, theoretical framework of physics that fully explains and links togeth ...
, which would integrate GUTs with a quantum gravity theory, faces a greater barrier because no quantum gravity theory (e.g.,
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
,
loop quantum gravity Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based direc ...
, and
twistor theory In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics. Penrose's idea was that twistor space should ...
) has secured wide acceptance. Some theories look for a graviton to complete the Standard Model list of force-carrying particles, while others, like loop quantum gravity, emphasize the possibility that time-space itself may have a quantum aspect to it. Some theories beyond the Standard Model include a hypothetical
fifth force In physics, a fifth force refers to a hypothetical fundamental interaction (also known as fundamental force) beyond the four known interactions in nature: gravitational, electromagnetic, strong nuclear, and weak nuclear forces. Some speculativ ...
, and the search for such a force is an ongoing line of experimental physics research. In
supersymmetric Supersymmetry is a theoretical framework in physics that suggests the existence of a symmetry between particles with integer spin (''bosons'') and particles with half-integer spin (''fermions''). It proposes that for every known particle, there ...
theories, some particles, known as moduli, acquire their masses only through supersymmetry breaking effects and can mediate new forces. Another reason to look for new forces is the discovery that the
expansion of the universe The expansion of the universe is the increase in proper length, distance between Gravitational binding energy, gravitationally unbound parts of the observable universe with time. It is an intrinsic and extrinsic properties (philosophy), intrins ...
is accelerating (also known as
dark energy In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure format ...
), creating a need to explain a nonzero
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is a coefficient that Albert Einstein initially added to his field equations of general rel ...
and possibly other modifications of
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. Fifth forces have also been suggested to explain phenomena such as CP violations,
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
, and
dark flow In astrophysics, dark flow is a controversial hypothesis to explain certain non-random measurements of peculiar velocity of galaxy clusters. The actual measured velocity is the sum of the velocity predicted by Hubble's law plus a possible small ...
.


See also

*
Quintessence Quintessence, or quintessential, or fifth essence, may refer to: Cosmology * Aether (classical element), in medieval cosmology and science, the fifth element that fills the universe beyond the terrestrial sphere * Quintessence (physics), a hypo ...
, a hypothesized fifth force *
Gerardus 't Hooft Gerardus "Gerard" 't Hooft (; born July 5, 1946) is a Dutch theoretical physicist and professor at Utrecht University, the Netherlands. He shared the 1999 Nobel Prize in Physics with his thesis advisor Martinus J. G. Veltman "for elucidating t ...
*
Edward Witten Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the sc ...
*
Howard Georgi Howard Mason Georgi III (born January 6, 1947 in San Bernardino) is an American theoretical physicist and the Mallinckrodt Professor of Physics and Harvard College Professor at Harvard University. He is also director of undergraduate studies in ...


References


Bibliography

* 2nd ed. * * While all interactions are discussed, discussion is especially thorough on the weak. * * * * * {{DEFAULTSORT:Fundamental Interaction Physical phenomena