HOME

TheInfoList



OR:

In
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galax ...
or planetary science, the frost line, also known as the snow line or ice line, is the particular distance in the solar nebula from the central protostar where it is cold enough for volatile compounds such as water,
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
, methane, carbon dioxide, and
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simpl ...
to condense into solid ice grains. Each volatile substance has its own snow line (e.g. carbon monoxide, nitrogen, and argon), so it is important to always specify which material's snow line is meant. A tracer gas may be used for materials that are difficult to detect; for example
diazenylium frameless, right Diazenylium is the chemical N2H+, an inorganic cation that was one of the first ions to be observed in interstellar clouds. Since then, it has been observed for in several different types of interstellar environments, observatio ...
for carbon monoxide. The term is borrowed from the notion of " frost line" in soil science.


Location

Different volatile compounds have different condensation temperatures at different partial pressures (thus different densities) in the protostar nebula, so their respective frost lines will differ. The actual temperature and distance for the snow line of water ice depend on the physical model used to calculate it and on the theoretical solar nebula model: * 170 K at 2.7 AU (Hayashi, 1981) * 143 K at 3.2 AU to 150 K at 3 AU (Podolak and Zucker, 2010) * 3.1 AU (Martin and Livio, 2012) * ≈150 K for μm-size grains and ≈200 K for km-size bodies (D'Angelo and Podolak, 2015)


Current snow line versus formation snow line

The radial position of the condensation/evaporation front varies over time, as the nebula evolves. Occasionally, the term ''snow line'' is also used to represent the present distance at which water ice can be stable (even under direct sunlight). This ''current snow line'' distance is different from the ''formation snow line'' distance during the formation of the Solar System, and approximately equals 5 AU. The reason for the difference is that during the formation of the Solar System, the solar nebula was an opaque cloud where temperatures were lower close to the Sun, and the Sun itself was less energetic. After formation, the ice got buried by infalling dust and it has remained stable a few meters below the surface. If ice within 5 AU is exposed, e.g. by a crater, then it sublimates on short timescales. However, out of direct sunlight ice can remain stable on the surface of asteroids (and the Moon and Mercury) if it is located in permanently shadowed polar craters, where temperature may remain very low over the age of the Solar System (e.g. 30–40 K on the Moon). Observations of the
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, called ...
, located between Mars and Jupiter, suggest that the water snow line during formation of the Solar System was located within this region. The outer asteroids are icy C-class objects (e.g. Abe et al. 2000; Morbidelli et al. 2000) whereas the inner asteroid belt is largely devoid of water. This implies that when planetesimal formation occurred the snow line was located at around 2.7 AU from the Sun. For example, the dwarf planet Ceres with semi-major axis of 2.77 AU lies almost exactly on the lower estimation for water snow line during the formation of the Solar System. Ceres appears to have an icy mantle and may even have a water ocean below the surface.


Planet formation

The lower temperature in the nebula beyond the frost line makes many more solid grains available for
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
into
planetesimals Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System ab ...
and eventually planets. The frost line therefore separates terrestrial planets from giant planets in the Solar System. However, giant planets have been found inside the frost line around several other stars (so-called hot Jupiters). They are thought to have formed outside the frost line, and later migrated inwards to their current positions. Earth, which lies less than a quarter of the distance to the frost line but is not a giant planet, has adequate gravitation for keeping methane, ammonia, and water vapor from escaping it. Methane and ammonia are rare in the Earth's atmosphere only because of their instability in an oxygen-rich atmosphere that results from life forms (largely green plants) whose biochemistry suggests plentiful methane and ammonia at one time, but of course
liquid water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a s ...
and
ice Ice is water frozen into a solid state, typically forming at or below temperatures of 0 degrees Celsius or Depending on the presence of impurities such as particles of soil or bubbles of air, it can appear transparent or a more or less opaq ...
, which are chemically stable in such an atmosphere, form much of the surface of Earth. Researchers Rebecca Martin and
Mario Livio Mario Livio (born June 19, 1945) is an Israeli-American astrophysicist and an author of works that popularize science and mathematics. For 24 years (1991-2015) he was an astrophysicist at the Space Telescope Science Institute, which operates ...
have proposed that asteroid belts may tend to form in the vicinity of the frost line, due to nearby giant planets disrupting planet formation inside their orbit. By analysing the temperature of warm dust found around some 90 stars, they concluded that the dust (and therefore possible asteroid belts) was typically found close to the frost line. The underlying mechanism may be the thermal instability of snow line on the timescales of 1,000 - 10,000 years, resulting in periodic deposition of dust material in relatively narrow circumstellar rings.


See also

*
Circumstellar habitable zone In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure.J. F. Kast ...
* Nebular hypothesis * Solar nebula


References


External links


The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer by M. Min, C.P. Dullemond, M. Kama, C. Dominik

On the Snow Line in Dusty Protoplanetary Disks by D. D. Sasselov and M. Lecar
{{DEFAULTSORT:Frost Line (Astrophysics) Planetary science Cold