HOME

TheInfoList



OR:

In mathematics, a field is a set on which addition, subtraction, multiplication, and
division Division or divider may refer to: Mathematics *Division (mathematics), the inverse of multiplication *Division algorithm, a method for computing the result of mathematical division Military *Division (military), a formation typically consisting ...
are defined and behave as the corresponding operations on
rational Rationality is the quality of being guided by or based on reasons. In this regard, a person acts rationally if they have a good reason for what they do or a belief is rational if it is based on strong evidence. This quality can apply to an abi ...
and real numbers do. A field is thus a fundamental algebraic structure which is widely used in
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
,
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s. Many other fields, such as fields of rational functions,
algebraic function field In mathematics, an algebraic function field (often abbreviated as function field) of ''n'' variables over a field ''k'' is a finitely generated field extension ''K''/''k'' which has transcendence degree ''n'' over ''k''. Equivalently, an algebrai ...
s, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension.
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, this theory shows that angle trisection and squaring the circle cannot be done with a compass and straightedge. Moreover, it shows that
quintic equation In algebra, a quintic function is a function of the form :g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, where , , , , and are members of a field, typically the rational numbers, the real numbers or the complex numbers, and is nonzero. In other words, a ...
s are, in general, algebraically unsolvable. Fields serve as foundational notions in several mathematical domains. This includes different branches of
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, which are based on fields with additional structure. Basic theorems in analysis hinge on the structural properties of the field of real numbers. Most importantly for algebraic purposes, any field may be used as the scalars for a vector space, which is the standard general context for linear algebra.
Number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
s, the siblings of the field of rational numbers, are studied in depth in
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
. Function fields can help describe properties of geometric objects.


Definition

Informally, a field is a set, along with two operations defined on that set: an addition operation written as , and a multiplication operation written as , both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse for all elements , and of a multiplicative inverse for every nonzero element . This allows one to also consider the so-called ''inverse'' operations of subtraction, , and division, , by defining: :, :.


Classic definition

Formally, a field is a set together with two binary operations on called ''addition'' and ''multiplication''. A binary operation on is a mapping , that is, a correspondence that associates with each ordered pair of elements of a uniquely determined element of . The result of the addition of and is called the sum of and , and is denoted . Similarly, the result of the multiplication of and is called the product of and , and is denoted or . These operations are required to satisfy the following properties, referred to as '' field axioms'' (in these axioms, , , and are arbitrary elements of the field ): *
Associativity In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
of addition and multiplication: , and . * Commutativity of addition and multiplication: , and . * Additive and multiplicative identity: there exist two different elements and in such that and . * Additive inverses: for every in , there exists an element in , denoted , called the ''additive inverse'' of , such that . * Multiplicative inverses: for every in , there exists an element in , denoted by or , called the ''multiplicative inverse'' of , such that . *
Distributivity In mathematics, the distributive property of binary operations generalizes the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary arithmeti ...
of multiplication over addition: . This may be summarized by saying: a field has two operations, called addition and multiplication; it is an abelian group under addition with 0 as the additive identity; the nonzero elements are an abelian group under multiplication with 1 as the multiplicative identity; and multiplication distributes over addition. Even more summarized: a field is a commutative ring where 0 \ne 1 and all nonzero elements are
invertible In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is ...
under multiplication.


Alternative definition

Fields can also be defined in different, but equivalent ways. One can alternatively define a field by four binary operations (addition, subtraction, multiplication, and division) and their required properties.
Division by zero In mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as \tfrac, where is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is ...
is, by definition, excluded. In order to avoid
existential quantifier In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, w ...
s, fields can be defined by two binary operations (addition and multiplication), two unary operations (yielding the additive and multiplicative inverses respectively), and two
nullary Arity () is the number of arguments or operands taken by a function, operation or relation in logic, mathematics, and computer science. In mathematics, arity may also be named ''rank'', but this word can have many other meanings in mathematics. ...
operations (the constants and ). These operations are then subject to the conditions above. Avoiding existential quantifiers is important in
constructive mathematics In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove th ...
and
computing Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, ...
. One may equivalently define a field by the same two binary operations, one unary operation (the multiplicative inverse), and two constants and , since and .The a priori twofold use of the symbol "−" for denoting one part of a constant and for the additive inverses is justified by this latter condition.


Examples


Rational numbers

Rational numbers have been widely used a long time before the elaboration of the concept of field. They are numbers that can be written as
fractions A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
, where and are integers, and . The additive inverse of such a fraction is , and the multiplicative inverse (provided that ) is , which can be seen as follows: : \frac b a \cdot \frac a b = \frac = 1. The abstractly required field axioms reduce to standard properties of rational numbers. For example, the law of distributivity can be proven as follows: : \begin & \frac a b \cdot \left(\frac c d + \frac e f \right) \\ pt= & \frac a b \cdot \left(\frac c d \cdot \frac f f + \frac e f \cdot \frac d d \right) \\ pt= & \frac \cdot \left(\frac + \frac\right) = \frac \cdot \frac \\ pt= & \frac = \frac + \frac = \frac + \frac \\ pt= & \frac a b \cdot \frac c d + \frac a b \cdot \frac e f. \end


Real and complex numbers

The real numbers , with the usual operations of addition and multiplication, also form a field. The
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s consist of expressions : with real, where is the
imaginary unit The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
, i.e., a (non-real) number satisfying . Addition and multiplication of real numbers are defined in such a way that expressions of this type satisfy all field axioms and thus hold for . For example, the distributive law enforces : It is immediate that this is again an expression of the above type, and so the complex numbers form a field. Complex numbers can be geometrically represented as points in the plane, with Cartesian coordinates given by the real numbers of their describing expression, or as the arrows from the origin to these points, specified by their length and an angle enclosed with some distinct direction. Addition then corresponds to combining the arrows to the intuitive parallelogram (adding the Cartesian coordinates), and the multiplication is – less intuitively – combining rotating and scaling of the arrows (adding the angles and multiplying the lengths). The fields of real and complex numbers are used throughout mathematics, physics, engineering, statistics, and many other scientific disciplines.


Constructible numbers

In antiquity, several geometric problems concerned the (in)feasibility of constructing certain numbers with compass and straightedge. For example, it was unknown to the Greeks that it is, in general, impossible to trisect a given angle in this way. These problems can be settled using the field of constructible numbers. Real constructible numbers are, by definition, lengths of line segments that can be constructed from the points 0 and 1 in finitely many steps using only compass and straightedge. These numbers, endowed with the field operations of real numbers, restricted to the constructible numbers, form a field, which properly includes the field of rational numbers. The illustration shows the construction of square roots of constructible numbers, not necessarily contained within . Using the labeling in the illustration, construct the segments , , and a
semicircle In mathematics (and more specifically geometry), a semicircle is a one-dimensional locus of points that forms half of a circle. The full arc of a semicircle always measures 180° (equivalently, radians, or a half-turn). It has only one line o ...
over (center at the
midpoint In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment. Formula The midpoint of a segment in ''n''-dimen ...
), which intersects the
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It ca ...
line through in a point , at a distance of exactly h=\sqrt p from when has length one. Not all real numbers are constructible. It can be shown that \sqrt 2 is not a constructible number, which implies that it is impossible to construct with compass and straightedge the length of the side of a cube with volume 2, another problem posed by the ancient Greeks.


A field with four elements

In addition to familiar number systems such as the rationals, there are other, less immediate examples of fields. The following example is a field consisting of four elements called , , , and . The notation is chosen such that plays the role of the additive identity element (denoted 0 in the axioms above), and is the multiplicative identity (denoted 1 in the axioms above). The field axioms can be verified by using some more field theory, or by direct computation. For example, : , which equals , as required by the distributivity. This field is called a finite field with four elements, and is denoted or . The subset consisting of and (highlighted in red in the tables at the right) is also a field, known as the ''
binary field (also denoted \mathbb F_2, or \mathbb Z/2\mathbb Z) is the finite field of two elements (GF is the initialism of ''Galois field'', another name for finite fields). Notations and \mathbb Z_2 may be encountered although they can be confused with ...
'' or . In the context of
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includi ...
and Boolean algebra, and are often denoted respectively by ''false'' and ''true'', and the addition is then denoted XOR (exclusive or). In other words, the structure of the binary field is the basic structure that allows computing with
bit The bit is the most basic unit of information in computing and digital communications. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represente ...
s.


Elementary notions

In this section, denotes an arbitrary field and and are arbitrary elements of .


Consequences of the definition

One has and . In particular, one may deduce the additive inverse of every element as soon as one knows . If then or must be 0, since, if , then . This means that every field is an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
. In addition, the following properties are true for any elements and : : : : : : if


The additive and the multiplicative group of a field

The axioms of a field imply that it is an abelian group under addition. This group is called the
additive group An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structures ...
of the field, and is sometimes denoted by when denoting it simply as could be confusing. Similarly, the ''nonzero'' elements of form an abelian group under multiplication, called the
multiplicative group In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
, and denoted by or just or . A field may thus be defined as set equipped with two operations denoted as an addition and a multiplication such that is an abelian group under addition, is an abelian group under multiplication (where 0 is the identity element of the addition), and multiplication is distributive over addition.Equivalently, a field is an algebraic structure of type , such that is not defined, and are abelian groups, and ⋅ is distributive over +. Some elementary statements about fields can therefore be obtained by applying general facts of groups. For example, the additive and multiplicative inverses and are uniquely determined by . The requirement follows, because 1 is the identity element of a group that does not contain 0. Thus, the
trivial ring In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which for ...
, consisting of a single element, is not a field. Every finite
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
of the multiplicative group of a field is cyclic (see ).


Characteristic

In addition to the multiplication of two elements of ''F'', it is possible to define the product of an arbitrary element of by a positive integer to be the -fold sum : (which is an element of .) If there is no positive integer such that :, then is said to have characteristic 0. For example, the field of rational numbers has characteristic 0 since no positive integer is zero. Otherwise, if there ''is'' a positive integer satisfying this equation, the smallest such positive integer can be shown to be a prime number. It is usually denoted by and the field is said to have characteristic then. For example, the field has characteristic 2 since (in the notation of the above addition table) . If has characteristic , then for all in . This implies that :, since all other binomial coefficients appearing in the
binomial formula In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the ...
are divisible by . Here, ( factors) is the -th power, i.e., the -fold product of the element . Therefore, the Frobenius map : is compatible with the addition in (and also with the multiplication), and is therefore a field homomorphism. The existence of this homomorphism makes fields in characteristic quite different from fields of characteristic 0.


Subfields and prime fields

A '' subfield'' of a field is a subset of that is a field with respect to the field operations of . Equivalently is a subset of that contains , and is closed under addition, multiplication, additive inverse and multiplicative inverse of a nonzero element. This means that , that for all both and are in , and that for all in , both and are in . Field homomorphisms are maps between two fields such that , , and , where and are arbitrary elements of . All field homomorphisms are injective. If is also surjective, it is called an isomorphism (or the fields and are called isomorphic). A field is called a
prime field In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive ide ...
if it has no proper (i.e., strictly smaller) subfields. Any field contains a prime field. If the characteristic of is (a prime number), the prime field is isomorphic to the finite field introduced below. Otherwise the prime field is isomorphic to .


Finite fields

''Finite fields'' (also called ''Galois fields'') are fields with finitely many elements, whose number is also referred to as the order of the field. The above introductory example is a field with four elements. Its subfield is the smallest field, because by definition a field has at least two distinct elements . The simplest finite fields, with prime order, are most directly accessible using modular arithmetic. For a fixed positive integer , arithmetic "modulo " means to work with the numbers : The addition and multiplication on this set are done by performing the operation in question in the set of integers, dividing by and taking the remainder as result. This construction yields a field precisely if is a prime number. For example, taking the prime results in the above-mentioned field . For and more generally, for any
composite number A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, ...
(i.e., any number which can be expressed as a product of two strictly smaller natural numbers), is not a field: the product of two non-zero elements is zero since in , which, as was explained above, prevents from being a field. The field with elements ( being prime) constructed in this way is usually denoted by . Every finite field has elements, where is prime and . This statement holds since may be viewed as a vector space over its prime field. The
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
of this vector space is necessarily finite, say , which implies the asserted statement. A field with elements can be constructed as the
splitting field In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a poly ...
of the polynomial :. Such a splitting field is an extension of in which the polynomial has zeros. This means has as many zeros as possible since the degree of is . For , it can be checked case by case using the above multiplication table that all four elements of satisfy the equation , so they are zeros of . By contrast, in , has only two zeros (namely 0 and 1), so does not split into linear factors in this smaller field. Elaborating further on basic field-theoretic notions, it can be shown that two finite fields with the same order are isomorphic. It is thus customary to speak of ''the'' finite field with elements, denoted by or .


History

Historically, three algebraic disciplines led to the concept of a field: the question of solving polynomial equations, algebraic number theory, and algebraic geometry. A first step towards the notion of a field was made in 1770 by Joseph-Louis Lagrange, who observed that permuting the zeros of a
cubic polynomial In mathematics, a cubic function is a function of the form f(x)=ax^3+bx^2+cx+d where the coefficients , , , and are complex numbers, and the variable takes real values, and a\neq 0. In other words, it is both a polynomial function of degree ...
in the expression : (with being a third root of unity) only yields two values. This way, Lagrange conceptually explained the classical solution method of Scipione del Ferro and
François Viète François Viète, Seigneur de la Bigotière ( la, Franciscus Vieta; 1540 – 23 February 1603), commonly know by his mononym, Vieta, was a French mathematician whose work on new algebra was an important step towards modern algebra, due to i ...
, which proceeds by reducing a cubic equation for an unknown to a quadratic equation for . Together with a similar observation for equations of degree 4, Lagrange thus linked what eventually became the concept of fields and the concept of groups. Vandermonde, also in 1770, and to a fuller extent,
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
, in his ''
Disquisitiones Arithmeticae The (Latin for "Arithmetical Investigations") is a textbook of number theory written in Latin by Carl Friedrich Gauss in 1798 when Gauss was 21 and first published in 1801 when he was 24. It is notable for having had a revolutionary impact on th ...
'' (1801), studied the equation : for a prime and, again using modern language, the resulting cyclic
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
. Gauss deduced that a regular -gon can be constructed if . Building on Lagrange's work, Paolo Ruffini claimed (1799) that
quintic equation In algebra, a quintic function is a function of the form :g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, where , , , , and are members of a field, typically the rational numbers, the real numbers or the complex numbers, and is nonzero. In other words, a ...
s (polynomial equations of degree 5) cannot be solved algebraically; however, his arguments were flawed. These gaps were filled by
Niels Henrik Abel Niels Henrik Abel ( , ; 5 August 1802 – 6 April 1829) was a Norwegian mathematician who made pioneering contributions in a variety of fields. His most famous single result is the first complete proof demonstrating the impossibility of solvin ...
in 1824. Évariste Galois, in 1832, devised necessary and sufficient criteria for a polynomial equation to be algebraically solvable, thus establishing in effect what is known as
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
today. Both Abel and Galois worked with what is today called an algebraic number field, but conceived neither an explicit notion of a field, nor of a group. In 1871 Richard Dedekind introduced, for a set of real or complex numbers that is closed under the four arithmetic operations, the German word ''Körper'', which means "body" or "corpus" (to suggest an organically closed entity). The English term "field" was introduced by . In 1881
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, ...
defined what he called a ''domain of rationality'', which is a field of
rational fraction In algebra, an algebraic fraction is a fraction whose numerator and denominator are algebraic expressions. Two examples of algebraic fractions are \frac and \frac. Algebraic fractions are subject to the same laws as arithmetic fractions. A rationa ...
s in modern terms. Kronecker's notion did not cover the field of all algebraic numbers (which is a field in Dedekind's sense), but on the other hand was more abstract than Dedekind's in that it made no specific assumption on the nature of the elements of a field. Kronecker interpreted a field such as abstractly as the rational function field . Prior to this, examples of transcendental numbers were known since
Joseph Liouville Joseph Liouville (; ; 24 March 1809 – 8 September 1882) was a French mathematician and engineer. Life and work He was born in Saint-Omer in France on 24 March 1809. His parents were Claude-Joseph Liouville (an army officer) and Thérèse ...
's work in 1844, until Charles Hermite (1873) and
Ferdinand von Lindemann Carl Louis Ferdinand von Lindemann (12 April 1852 – 6 March 1939) was a German mathematician, noted for his proof, published in 1882, that (pi) is a transcendental number, meaning it is not a root of any polynomial with rational coefficien ...
(1882) proved the transcendence of and , respectively. The first clear definition of an abstract field is due to . In particular, Heinrich Martin Weber's notion included the field F''p''. Giuseppe Veronese (1891) studied the field of formal power series, which led to introduce the field of ''p''-adic numbers. synthesized the knowledge of abstract field theory accumulated so far. He axiomatically studied the properties of fields and defined many important field-theoretic concepts. The majority of the theorems mentioned in the sections
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
, Constructing fields and Elementary notions can be found in Steinitz's work. linked the notion of orderings in a field, and thus the area of analysis, to purely algebraic properties. Emil Artin redeveloped Galois theory from 1928 through 1942, eliminating the dependency on the
primitive element theorem In field theory, the primitive element theorem is a result characterizing the finite degree field extensions that can be generated by a single element. Such a generating element is called a primitive element of the field extension, and the extens ...
.


Constructing fields


Constructing fields from rings

A commutative ring is a set, equipped with an addition and multiplication operation, satisfying all the axioms of a field, except for the existence of multiplicative inverses . For example, the integers form a commutative ring, but not a field: the reciprocal of an integer is not itself an integer, unless . In the hierarchy of algebraic structures fields can be characterized as the commutative rings in which every nonzero element is a
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (a ...
(which means every element is invertible). Similarly, fields are the commutative rings with precisely two distinct ideals, and . Fields are also precisely the commutative rings in which is the only prime ideal. Given a commutative ring , there are two ways to construct a field related to , i.e., two ways of modifying such that all nonzero elements become invertible: forming the field of fractions, and forming residue fields. The field of fractions of is , the rationals, while the residue fields of are the finite fields .


Field of fractions

Given an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
, its
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
is built with the fractions of two elements of exactly as Q is constructed from the integers. More precisely, the elements of are the fractions where and are in , and . Two fractions and are equal if and only if . The operation on the fractions work exactly as for rational numbers. For example, :\frac+\frac = \frac. It is straightforward to show that, if the ring is an integral domain, the set of the fractions form a field. The field of the
rational fraction In algebra, an algebraic fraction is a fraction whose numerator and denominator are algebraic expressions. Two examples of algebraic fractions are \frac and \frac. Algebraic fractions are subject to the same laws as arithmetic fractions. A rationa ...
s over a field (or an integral domain) is the field of fractions of the polynomial ring . The field of Laurent series :\sum_^\infty a_i x^i \ (k \in \Z, a_i \in F) over a field is the field of fractions of the ring of formal power series (in which ). Since any Laurent series is a fraction of a power series divided by a power of (as opposed to an arbitrary power series), the representation of fractions is less important in this situation, though.


Residue fields

In addition to the field of fractions, which embeds injectively into a field, a field can be obtained from a commutative ring by means of a
surjective map In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
onto a field . Any field obtained in this way is a
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
, where is a
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals c ...
of . If has only one maximal ideal , this field is called the
residue field In mathematics, the residue field is a basic construction in commutative algebra. If ''R'' is a commutative ring and ''m'' is a maximal ideal, then the residue field is the quotient ring ''k'' = ''R''/''m'', which is a field. Frequently, ''R'' is a ...
of . The ideal generated by a single polynomial in the polynomial ring (over a field ) is maximal if and only if is irreducible in , i.e., if cannot be expressed as the product of two polynomials in of smaller degree. This yields a field : This field contains an element (namely the
residue class In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his bo ...
of ) which satisfies the equation :. For example, is obtained from by adjoining the
imaginary unit The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
symbol , which satisfies , where . Moreover, is irreducible over , which implies that the map that sends a polynomial to yields an isomorphism :\mathbf R \left(X^2 + 1\right) \ \stackrel \cong \longrightarrow \ \mathbf C.


Constructing fields within a bigger field

Fields can be constructed inside a given bigger container field. Suppose given a field , and a field containing as a subfield. For any element of , there is a smallest subfield of containing and , called the subfield of ''F'' generated by and denoted . The passage from to is referred to by '' adjoining an element'' to . More generally, for a subset , there is a minimal subfield of containing and , denoted by . The compositum of two subfields and of some field is the smallest subfield of containing both and The compositum can be used to construct the biggest subfield of satisfying a certain property, for example the biggest subfield of , which is, in the language introduced below, algebraic over .Further examples include the maximal
unramified extension In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as ...
or the maximal
abelian extension In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable ...
within .


Field extensions

The notion of a subfield can also be regarded from the opposite point of view, by referring to being a '' field extension'' (or just extension) of , denoted by :, and read " over ". A basic datum of a field extension is its degree , i.e., the dimension of as an -vector space. It satisfies the formula :. Extensions whose degree is finite are referred to as finite extensions. The extensions and are of degree 2, whereas is an infinite extension.


Algebraic extensions

A pivotal notion in the study of field extensions are algebraic elements. An element is ''algebraic'' over if it is a root of a polynomial with coefficients in , that is, if it satisfies a
polynomial equation In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field (mathematics), field, often the field of the rational numbers. For many authors, the term '' ...
:, with in , and . For example, the
imaginary unit The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
in is algebraic over , and even over , since it satisfies the equation :. A field extension in which every element of is algebraic over is called an
algebraic extension In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, if every element of is a root of a non-zero polynomial with coefficients in . A field ext ...
. Any finite extension is necessarily algebraic, as can be deduced from the above multiplicativity formula. The subfield generated by an element , as above, is an algebraic extension of if and only if is an algebraic element. That is to say, if is algebraic, all other elements of are necessarily algebraic as well. Moreover, the degree of the extension , i.e., the dimension of as an -vector space, equals the minimal degree such that there is a polynomial equation involving , as above. If this degree is , then the elements of have the form :\sum_^ a_k x^k, \ \ a_k \in E. For example, the field of
Gaussian rational In mathematics, a Gaussian rational number is a complex number of the form ''p'' + ''qi'', where ''p'' and ''q'' are both rational numbers. The set of all Gaussian rationals forms the Gaussian rational field, denoted Q(''i''), obtained b ...
s is the subfield of consisting of all numbers of the form where both and are rational numbers: summands of the form (and similarly for higher exponents) don't have to be considered here, since can be simplified to .


Transcendence bases

The above-mentioned field of
rational fraction In algebra, an algebraic fraction is a fraction whose numerator and denominator are algebraic expressions. Two examples of algebraic fractions are \frac and \frac. Algebraic fractions are subject to the same laws as arithmetic fractions. A rationa ...
s , where is an indeterminate, is not an algebraic extension of since there is no polynomial equation with coefficients in whose zero is . Elements, such as , which are not algebraic are called transcendental. Informally speaking, the indeterminate and its powers do not interact with elements of . A similar construction can be carried out with a set of indeterminates, instead of just one. Once again, the field extension discussed above is a key example: if is not algebraic (i.e., is not a root of a polynomial with coefficients in ), then is isomorphic to . This isomorphism is obtained by substituting to in rational fractions. A subset of a field is a transcendence basis if it is
algebraically independent In abstract algebra, a subset S of a field L is algebraically independent over a subfield K if the elements of S do not satisfy any non-trivial polynomial equation with coefficients in K. In particular, a one element set \ is algebraically in ...
(don't satisfy any polynomial relations) over and if is an algebraic extension of . Any field extension has a transcendence basis. Thus, field extensions can be split into ones of the form ( purely transcendental extensions) and algebraic extensions.


Closure operations

A field is
algebraically closed In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
if it does not have any strictly bigger algebraic extensions or, equivalently, if any
polynomial equation In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field (mathematics), field, often the field of the rational numbers. For many authors, the term '' ...
:, with coefficients , has a solution . By the
fundamental theorem of algebra The fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non- constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomia ...
, is algebraically closed, i.e., ''any'' polynomial equation with complex coefficients has a complex solution. The rational and the real numbers are ''not'' algebraically closed since the equation : does not have any rational or real solution. A field containing is called an ''
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ( ...
'' of if it is algebraic over (roughly speaking, not too big compared to ) and is algebraically closed (big enough to contain solutions of all polynomial equations). By the above, is an algebraic closure of . The situation that the algebraic closure is a finite extension of the field is quite special: by the Artin-Schreier theorem, the degree of this extension is necessarily 2, and is
elementarily equivalent In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often ...
to . Such fields are also known as
real closed field In mathematics, a real closed field is a field ''F'' that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. D ...
s. Any field has an algebraic closure, which is moreover unique up to (non-unique) isomorphism. It is commonly referred to as ''the'' algebraic closure and denoted . For example, the algebraic closure of is called the field of algebraic numbers. The field is usually rather implicit since its construction requires the
ultrafilter lemma In the mathematical field of set theory, an ultrafilter is a ''maximal proper filter'': it is a filter U on a given non-empty set X which is a certain type of non-empty family of subsets of X, that is not equal to the power set \wp(X) of X (suc ...
, a set-theoretic axiom that is weaker than the axiom of choice. In this regard, the algebraic closure of , is exceptionally simple. It is the union of the finite fields containing (the ones of order ). For any algebraically closed field of characteristic 0, the algebraic closure of the field of Laurent series is the field of
Puiseux series In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series : \begin x^ &+ 2x^ + x^ + 2x^ + x^ + x^5 + \cdots\\ &=x^+ 2x^ + x^ + 2x^ + x^ + ...
, obtained by adjoining roots of .


Fields with additional structure

Since fields are ubiquitous in mathematics and beyond, several refinements of the concept have been adapted to the needs of particular mathematical areas.


Ordered fields

A field ''F'' is called an ''ordered field'' if any two elements can be compared, so that and whenever and . For example, the real numbers form an ordered field, with the usual ordering . The Artin-Schreier theorem states that a field can be ordered if and only if it is a
formally real field In mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a (not necessarily unique) ordering that makes it an ordered field. Alternative definitions The definition given above i ...
, which means that any quadratic equation :x_1^2 + x_2^2 + \dots + x_n^2 = 0 only has the solution . The set of all possible orders on a fixed field is isomorphic to the set of
ring homomorphism In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is: :addition preser ...
s from the Witt ring of quadratic forms over , to . An
Archimedean field In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typical ...
is an ordered field such that for each element there exists a finite expression : whose value is greater than that element, that is, there are no infinite elements. Equivalently, the field contains no infinitesimals (elements smaller than all rational numbers); or, yet equivalent, the field is isomorphic to a subfield of . An ordered field is
Dedekind-complete In mathematics, the least-upper-bound property (sometimes called completeness or supremum property or l.u.b. property) is a fundamental property of the real numbers. More generally, a partially ordered set has the least-upper-bound property if eve ...
if all
upper bound In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is greater than or equal to every element of . Dually, a lower bound or minorant of is defined to be an eleme ...
s, lower bounds (see
Dedekind cut In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind but previously considered by Joseph Bertrand, are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of the r ...
) and limits, which should exist, do exist. More formally, each bounded subset of is required to have a least upper bound. Any complete field is necessarily Archimedean, since in any non-Archimedean field there is neither a greatest infinitesimal nor a least positive rational, whence the sequence , every element of which is greater than every infinitesimal, has no limit. Since every proper subfield of the reals also contains such gaps, is the unique complete ordered field, up to isomorphism. Several foundational results in
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
follow directly from this characterization of the reals. The hyperreals form an ordered field that is not Archimedean. It is an extension of the reals obtained by including infinite and infinitesimal numbers. These are larger, respectively smaller than any real number. The hyperreals form the foundational basis of
non-standard analysis The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using epsilon–delta ...
.


Topological fields

Another refinement of the notion of a field is a
topological field In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is w ...
, in which the set is a topological space, such that all operations of the field (addition, multiplication, the maps and ) are
continuous map In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in valu ...
s with respect to the topology of the space. The topology of all the fields discussed below is induced from a metric, i.e., a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
: that measures a ''distance'' between any two elements of . The completion of is another field in which, informally speaking, the "gaps" in the original field are filled, if there are any. For example, any
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
, such as , is a "gap" in the rationals in the sense that it is a real number that can be approximated arbitrarily closely by rational numbers , in the sense that distance of and given by the absolute value is as small as desired. The following table lists some examples of this construction. The fourth column shows an example of a zero
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
, i.e., a sequence whose limit (for ) is zero. The field is used in number theory and -adic analysis. The algebraic closure carries a unique norm extending the one on , but is not complete. The completion of this algebraic closure, however, is algebraically closed. Because of its rough analogy to the complex numbers, it is sometimes called the field of complex p-adic numbers and is denoted by .


Local fields

The following topological fields are called ''
local field In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact ...
s'':Some authors also consider the fields and to be local fields. On the other hand, these two fields, also called Archimedean local fields, share little similarity with the local fields considered here, to a point that calls them "completely anomalous". * finite extensions of (local fields of characteristic zero) * finite extensions of , the field of Laurent series over (local fields of characteristic ). These two types of local fields share some fundamental similarities. In this relation, the elements and (referred to as
uniformizer In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain ''R'' which satisfies any one of the following equivalent conditions: # ''R'' ...
) correspond to each other. The first manifestation of this is at an elementary level: the elements of both fields can be expressed as power series in the uniformizer, with coefficients in . (However, since the addition in is done using
carry Carry or carrying may refer to: People *Carry (name) Finance * Carried interest (or carry), the share of profits in an investment fund paid to the fund manager * Carry (investment), a financial term: the carry of an asset is the gain or cost of h ...
ing, which is not the case in , these fields are not isomorphic.) The following facts show that this superficial similarity goes much deeper: * Any first-order statement that is true for almost all is also true for almost all . An application of this is the Ax-Kochen theorem describing zeros of homogeneous polynomials in . * Tamely ramified extensions of both fields are in bijection to one another. * Adjoining arbitrary -power roots of (in ), respectively of (in ), yields (infinite) extensions of these fields known as perfectoid fields. Strikingly, the Galois groups of these two fields are isomorphic, which is the first glimpse of a remarkable parallel between these two fields: \operatorname \left(\mathbf Q_p \left(p^ \right) \right) \cong \operatorname \left(\mathbf F_p((t))\left(t^\right)\right).


Differential fields

Differential fields are fields equipped with a
derivation Derivation may refer to: Language * Morphological derivation, a word-formation process * Parse tree or concrete syntax tree, representing a string's syntax in formal grammars Law * Derivative work, in copyright law * Derivation proceeding, a proc ...
, i.e., allow to take derivatives of elements in the field. For example, the field R(''X''), together with the standard derivative of polynomials forms a differential field. These fields are central to
differential Galois theory In mathematics, differential Galois theory studies the Galois groups of differential equations. Overview Whereas algebraic Galois theory studies extensions of algebraic fields, differential Galois theory studies extensions of differential field ...
, a variant of Galois theory dealing with
linear differential equation In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b ...
s.


Galois theory

Galois theory studies
algebraic extension In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, if every element of is a root of a non-zero polynomial with coefficients in . A field ext ...
s of a field by studying the symmetry in the arithmetic operations of addition and multiplication. An important notion in this area is that of
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
Galois extension In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ' ...
s , which are, by definition, those that are separable and
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
. The
primitive element theorem In field theory, the primitive element theorem is a result characterizing the finite degree field extensions that can be generated by a single element. Such a generating element is called a primitive element of the field extension, and the extens ...
shows that finite separable extensions are necessarily simple, i.e., of the form :, where is an irreducible polynomial (as above). For such an extension, being normal and separable means that all zeros of are contained in and that has only simple zeros. The latter condition is always satisfied if has characteristic 0. For a finite Galois extension, the
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
is the group of
field automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
s of that are trivial on (i.e., the bijections that preserve addition and multiplication and that send elements of to themselves). The importance of this group stems from the fundamental theorem of Galois theory, which constructs an explicit
one-to-one correspondence In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
between the set of
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
s of and the set of intermediate extensions of the extension . By means of this correspondence, group-theoretic properties translate into facts about fields. For example, if the Galois group of a Galois extension as above is not solvable (cannot be built from abelian groups), then the zeros of ''cannot'' be expressed in terms of addition, multiplication, and radicals, i.e., expressions involving \sqrt /math>. For example, the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...
s is not solvable for . Consequently, as can be shown, the zeros of the following polynomials are not expressible by sums, products, and radicals. For the latter polynomial, this fact is known as the
Abel–Ruffini theorem In mathematics, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, ''general'' means th ...
: : (and ), : (where is regarded as a polynomial in , for some indeterminates , is any field, and ). The tensor product of fields is not usually a field. For example, a finite extension of degree is a Galois extension if and only if there is an isomorphism of -algebras :. This fact is the beginning of Grothendieck's Galois theory, a far-reaching extension of Galois theory applicable to algebro-geometric objects.


Invariants of fields

Basic invariants of a field include the characteristic and the
transcendence degree In abstract algebra, the transcendence degree of a field extension ''L'' / ''K'' is a certain rather coarse measure of the "size" of the extension. Specifically, it is defined as the largest cardinality of an algebraically independent subset of ...
of over its prime field. The latter is defined as the maximal number of elements in that are algebraically independent over the prime field. Two algebraically closed fields and are isomorphic precisely if these two data agree. This implies that any two
uncountable In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal num ...
algebraically closed fields of the same cardinality and the same characteristic are isomorphic. For example, and are isomorphic (but ''not'' isomorphic as topological fields).


Model theory of fields

In model theory, a branch of mathematical logic, two fields and are called
elementarily equivalent In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often ...
if every mathematical statement that is true for is also true for and conversely. The mathematical statements in question are required to be first-order sentences (involving 0, 1, the addition and multiplication). A typical example, for , ''n'' an integer, is : = "any polynomial of degree in has a zero in " The set of such formulas for all expresses that is algebraically closed. The
Lefschetz principle In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by ...
states that is elementarily equivalent to any algebraically closed field of characteristic zero. Moreover, any fixed statement holds in if and only if it holds in any algebraically closed field of sufficiently high characteristic. If is an
ultrafilter In the mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a maximal filter on P; that is, a proper filter on P that cannot be enlarged to a bigger proper filter o ...
on a set , and is a field for every in , the
ultraproduct The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All factor ...
of the with respect to is a field. It is denoted by :, since it behaves in several ways as a limit of the fields : Łoś's theorem states that any first order statement that holds for all but finitely many , also holds for the ultraproduct. Applied to the above sentence , this shows that there is an isomorphismBoth and are algebraically closed by Łoś's theorem. For the same reason, they both have characteristic zero. Finally, they are both uncountable, so that they are isomorphic. :\operatorname_ \overline \mathbf F_p \cong \mathbf C. The Ax–Kochen theorem mentioned above also follows from this and an isomorphism of the ultraproducts (in both cases over all primes ) :. In addition, model theory also studies the logical properties of various other types of fields, such as
real closed field In mathematics, a real closed field is a field ''F'' that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. D ...
s or exponential fields (which are equipped with an exponential function ).


The absolute Galois group

For fields that are not algebraically closed (or not separably closed), the
absolute Galois group In mathematics, the absolute Galois group ''GK'' of a field ''K'' is the Galois group of ''K''sep over ''K'', where ''K''sep is a separable closure of ''K''. Alternatively it is the group of all automorphisms of the algebraic closure of ''K'' t ...
is fundamentally important: extending the case of finite Galois extensions outlined above, this group governs ''all'' finite separable extensions of . By elementary means, the group can be shown to be the Prüfer group, the profinite completion of . This statement subsumes the fact that the only algebraic extensions of are the fields for , and that the Galois groups of these finite extensions are given by :. A description in terms of generators and relations is also known for the Galois groups of -adic number fields (finite extensions of ). Representations of Galois groups and of related groups such as the
Weil group In mathematics, a Weil group, introduced by , is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field ''F'', its Weil group is generally denoted ''WF''. There also exists "finite lev ...
are fundamental in many branches of arithmetic, such as the
Langlands program In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic num ...
. The cohomological study of such representations is done using
Galois cohomology In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated to a field extension ''L''/''K'' acts in a natur ...
. For example, the Brauer group, which is classically defined as the group of central simple -algebras, can be reinterpreted as a Galois cohomology group, namely :.


K-theory

Milnor K-theory In mathematics, Milnor K-theory is an algebraic invariant (denoted K_*(F) for a field F) defined by as an attempt to study higher algebraic K-theory in the special case of fields. It was hoped this would help illuminate the structure for algebrai ...
is defined as :K_n^M(F) = F^\times \otimes \cdots \otimes F^\times / \left\langle x \otimes (1-x) \mid x \in F \setminus \ \right\rangle. The
norm residue isomorphism theorem In mathematics, the norm residue isomorphism theorem is a long-sought result relating Milnor ''K''-theory and Galois cohomology. The result has a relatively elementary formulation and at the same time represents the key juncture in the proofs of ...
, proved around 2000 by
Vladimir Voevodsky Vladimir Alexandrovich Voevodsky (, russian: Влади́мир Алекса́ндрович Воево́дский; 4 June 1966 – 30 September 2017) was a Russian-American mathematician. His work in developing a homotopy theory for algebraic va ...
, relates this to Galois cohomology by means of an isomorphism :K_n^M(F) / p = H^n(F, \mu_l^).
Algebraic K-theory Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sense ...
is related to the group of
invertible matrices In linear algebra, an -by- square matrix is called invertible (also nonsingular or nondegenerate), if there exists an -by- square matrix such that :\mathbf = \mathbf = \mathbf_n \ where denotes the -by- identity matrix and the multiplicati ...
with coefficients the given field. For example, the process of taking the determinant of an invertible matrix leads to an isomorphism K1(''F'') = ''F''×. Matsumoto's theorem shows that K2(''F'') agrees with K2M(''F''). In higher degrees, K-theory diverges from Milnor K-theory and remains hard to compute in general.


Applications


Linear algebra and commutative algebra

If , then the equation : has a unique solution in a field , namely x=a^b. This immediate consequence of the definition of a field is fundamental in linear algebra. For example, it is an essential ingredient of Gaussian elimination and of the proof that any vector space has a
basis Basis may refer to: Finance and accounting * Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates * Basis trading, a trading strategy consisting ...
. The theory of modules (the analogue of vector spaces over rings instead of fields) is much more complicated, because the above equation may have several or no solutions. In particular systems of linear equations over a ring are much more difficult to solve than in the case of fields, even in the specially simple case of the ring \Z of the integers.


Finite fields: cryptography and coding theory

A widely applied cryptographic routine uses the fact that discrete exponentiation, i.e., computing : ( factors, for an integer ) in a (large) finite field can be performed much more efficiently than the discrete logarithm, which is the inverse operation, i.e., determining the solution to an equation :. In elliptic curve cryptography, the multiplication in a finite field is replaced by the operation of adding points on an elliptic curve, i.e., the solutions of an equation of the form :. Finite fields are also used in
coding theory Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied ...
and combinatorics.


Geometry: field of functions

Functions on a suitable topological space into a field can be added and multiplied pointwise, e.g., the product of two functions is defined by the product of their values within the domain: :. This makes these functions a -
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prom ...
. For having a ''field'' of functions, one must consider algebras of functions that are
integral domains In mathematics, specifically abstract algebra, an integral domain is a Zero ring, nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring (mathematics), ring of integ ...
. In this case the ratios of two functions, i.e., expressions of the form :\frac, form a field, called field of functions. This occurs in two main cases. When is a complex manifold . In this case, one considers the algebra of
holomorphic functions In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex deriv ...
, i.e., complex differentiable functions. Their ratios form the field of
meromorphic function In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are poles of the function. The ...
s on . The function field of an algebraic variety (a geometric object defined as the common zeros of polynomial equations) consists of ratios of
regular function In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regula ...
s, i.e., ratios of polynomial functions on the variety. The function field of the -dimensional space over a field is , i.e., the field consisting of ratios of polynomials in indeterminates. The function field of is the same as the one of any open dense subvariety. In other words, the function field is insensitive to replacing by a (slightly) smaller subvariety. The function field is invariant under isomorphism and
birational equivalence In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational f ...
of varieties. It is therefore an important tool for the study of abstract algebraic varieties and for the classification of algebraic varieties. For example, the
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
, which equals the transcendence degree of , is invariant under birational equivalence. For curves (i.e., the dimension is one), the function field is very close to : if is
smooth Smooth may refer to: Mathematics * Smooth function, a function that is infinitely differentiable; used in calculus and topology * Smooth manifold, a differentiable manifold for which all the transition maps are smooth functions * Smooth algebrai ...
and
proper Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map for ...
(the analogue of being compact), can be reconstructed, up to isomorphism, from its field of functions.More precisely, there is an equivalence of categories between smooth proper algebraic curves over an algebraically closed field and finite field extensions of . In higher dimension the function field remembers less, but still decisive information about . The study of function fields and their geometric meaning in higher dimensions is referred to as
birational geometry In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational ...
. The minimal model program attempts to identify the simplest (in a certain precise sense) algebraic varieties with a prescribed function field.


Number theory: global fields

Global fields are in the limelight in algebraic number theory and
arithmetic geometry In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties. ...
. They are, by definition,
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
s (finite extensions of ) or function fields over (finite extensions of ). As for local fields, these two types of fields share several similar features, even though they are of characteristic 0 and positive characteristic, respectively. This
function field analogy This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of pro ...
can help to shape mathematical expectations, often first by understanding questions about function fields, and later treating the number field case. The latter is often more difficult. For example, the Riemann hypothesis concerning the zeros of the Riemann zeta function (open as of 2017) can be regarded as being parallel to the
Weil conjectures In mathematics, the Weil conjectures were highly influential proposals by . They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory. Th ...
(proven in 1974 by
Pierre Deligne Pierre René, Viscount Deligne (; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord P ...
).
Cyclotomic field In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of ...
s are among the most intensely studied number fields. They are of the form , where is a primitive -th root of unity, i.e., a complex number satisfying and for all . For being a
regular prime In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli nu ...
, Kummer used cyclotomic fields to prove
Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been ...
, which asserts the non-existence of rational nonzero solutions to the equation :. Local fields are completions of global fields.
Ostrowski's theorem In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers \Q is equivalent to either the usual real absolute value or a -adic absolute value. Definitions Raisi ...
asserts that the only completions of , a global field, are the local fields and . Studying arithmetic questions in global fields may sometimes be done by looking at the corresponding questions locally. This technique is called the local-global principle. For example, the Hasse–Minkowski theorem reduces the problem of finding rational solutions of quadratic equations to solving these equations in and , whose solutions can easily be described. Unlike for local fields, the Galois groups of global fields are not known. Inverse Galois theory studies the (unsolved) problem whether any finite group is the Galois group for some number field . Class field theory describes the
abelian extension In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable ...
s, i.e., ones with abelian Galois group, or equivalently the abelianized Galois groups of global fields. A classical statement, the
Kronecker–Weber theorem In algebraic number theory, it can be shown that every cyclotomic field is an abelian extension of the rational number field Q, having Galois group of the form (\mathbb Z/n\mathbb Z)^\times. The Kronecker–Weber theorem provides a partial conve ...
, describes the maximal abelian extension of : it is the field : obtained by adjoining all primitive -th roots of unity. Kronecker's Jugendtraum asks for a similarly explicit description of of general number fields . For imaginary quadratic fields, F=\mathbf Q(\sqrt), , the theory of
complex multiplication In mathematics, complex multiplication (CM) is the theory of elliptic curves ''E'' that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible wh ...
describes using elliptic curves. For general number fields, no such explicit description is known.


Related notions

In addition to the additional structure that fields may enjoy, fields admit various other related notions. Since in any field 0 ≠ 1, any field has at least two elements. Nonetheless, there is a concept of
field with one element In mathematics, the field with one element is a suggestive name for an object that should behave similarly to a finite field with a single element, if such a field could exist. This object is denoted F1, or, in a French–English pun, Fun. The name ...
, which is suggested to be a limit of the finite fields , as tends to 1. In addition to division rings, there are various other weaker algebraic structures related to fields such as
quasifield In mathematics, a quasifield is an algebraic structure (Q,+,\cdot) where + and \cdot are binary operations on Q, much like a division ring, but with some weaker conditions. All division rings, and thus all fields, are quasifields. Definition A qu ...
s, near-fields and semifields. There are also proper classes with field structure, which are sometimes called Fields, with a capital F. The
surreal number In mathematics, the surreal number system is a totally ordered proper class containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals ...
s form a Field containing the reals, and would be a field except for the fact that they are a proper class, not a set. The
nimber In mathematics, the nimbers, also called ''Grundy numbers'', are introduced in combinatorial game theory, where they are defined as the values of heaps in the game Nim. The nimbers are the ordinal numbers endowed with ''nimber addition'' and ' ...
s, a concept from game theory, form such a Field as well.


Division rings

Dropping one or several axioms in the definition of a field leads to other algebraic structures. As was mentioned above, commutative rings satisfy all field axioms except for the existence of multiplicative inverses. Dropping instead commutativity of multiplication leads to the concept of a ''
division ring In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element ...
'' or ''skew field'';Historically, division rings were sometimes referred to as fields, while fields were called ''commutative fields''. sometimes associativity is weakened as well. The only division rings that are finite-dimensional -vector spaces are itself, (which is a field), and the quaternions (in which multiplication is non-commutative). This result is known as the Frobenius theorem. The octonions , for which multiplication is neither commutative nor associative, is a normed alternative division algebra, but is not a division ring. This fact was proved using methods of
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
in 1958 by
Michel Kervaire Michel André Kervaire (26 April 1927 – 19 November 2007) was a French mathematician who made significant contributions to topology and algebra. He introduced the Kervaire semi-characteristic. He was the first to show the existence of topologi ...
,
Raoul Bott Raoul Bott (September 24, 1923 – December 20, 2005) was a Hungarian-American mathematician known for numerous basic contributions to geometry in its broad sense. He is best known for his Bott periodicity theorem, the Morse–Bott functions whi ...
, and
John Milnor John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook Univ ...
. The non-existence of an odd-dimensional division algebra is more classical. It can be deduced from the
hairy ball theorem The hairy ball theorem of algebraic topology (sometimes called the hedgehog theorem in Europe) states that there is no nonvanishing continuous tangent vector field on even-dimensional ''n''-spheres. For the ordinary sphere, or 2‑sphere, if ...
illustrated at the right.


Notes


References

* * * , especially Chapter 13 * * * * * * . See especially Book 3 () and Book 6 (). * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * {{DEFAULTSORT:Field (Mathematics) Algebraic structures Abstract algebra