In
cell biology
Cell biology (also cellular biology or cytology) is a branch of biology that studies the structure, function, and behavior of cells. All living organisms are made of cells. A cell is the basic unit of life that is responsible for the living an ...
, protein kinase A (PKA) is a family of
serine-threonine kinases
whose activity is dependent on cellular levels of
cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (). PKA has several functions in the cell, including regulation of
glycogen
Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. It is the main storage form of glucose in the human body.
Glycogen functions as one of three regularly used forms ...
,
sugar
Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose
Glucose is a sugar with the Chemical formula#Molecular formula, molecul ...
, and
lipid
Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
metabolism
Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the co ...
. It should not be confused with 5'-AMP-activated protein kinase (
AMP-activated protein kinase
5' AMP-activated protein kinase or AMPK or 5' adenosine monophosphate-activated protein kinase is an enzyme (EC 2.7.11.31) that plays a role in cellular energy homeostasis, largely to activate glucose and fatty acid uptake and oxidation when cell ...
).
History
Protein kinase A, more precisely known as adenosine 3',5'-monophosphate (cyclic AMP)-dependent protein kinase, abbreviated to PKA, was discovered by chemists
Edmond H. Fischer and
Edwin G. Krebs in 1968. They won the
Nobel Prize in Physiology or Medicine
The Nobel Prize in Physiology or Medicine () is awarded yearly by the Nobel Assembly at the Karolinska Institute for outstanding discoveries in physiology or medicine. The Nobel Prize is not a single prize, but five separate prizes that, acco ...
in 1992 for their work on phosphorylation and dephosphorylation and how it relates to PKA activity.
PKA is one of the most widely researched
protein kinases
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fun ...
, in part because of its uniqueness; out of 540 different protein kinase genes that make up the human
kinome, only one other protein kinase,
casein kinase 2, is known to exist in a physiological tetrameric complex, meaning it consists of four subunits.
The diversity of mammalian PKA subunits was realized after Dr. Stan McKnight and others identified four possible catalytic subunit genes and four regulatory subunit genes. In 1991,
Susan Taylor and colleagues crystallized the PKA Cα subunit, which revealed the bi-lobe structure of the protein kinase core for the very first time, providing a blueprint for all the other protein kinases in a genome (the kinome).
Structure
When inactive, the PKA apoenzyme exists as a tetramer which consists of two regulatory
subunits and two catalytic subunits. The catalytic subunit contains the active site, a series of canonical residues found in
protein kinases
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fun ...
that bind and hydrolyse
ATP, and a domain to bind the regulatory subunit. The regulatory subunit has domains to bind to cyclic AMP, a domain that interacts with catalytic subunit, and an auto inhibitory domain. There are two major forms of regulatory subunit; RI and RII.
Mammalian cells have at least two types of PKAs: type I is mainly in the
cytosol
The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
, whereas type II is bound via its regulatory subunits and special anchoring proteins, described in the
anchorage section, to the
plasma membrane
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
,
nuclear membrane
The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer polar membrane, membranes that in eukaryotic cells surround the Cell nucleus, nucleus, which encloses the genome, genetic material.
The nuclear envelope con ...
,
mitochondrial outer membrane, and
microtubules. In both types, once the catalytic subunits are freed and active, they can migrate into the
nucleus (where they can phosphorylate transcription regulatory proteins), while the regulatory subunits remain in the cytoplasm.
The following human genes encode PKA subunits:
* catalytic subunit –
PRKACA
The catalytic subunit α of protein kinase A is a key regulatory enzyme that in humans is encoded by the ''PRKACA'' gene. This enzyme is responsible for phosphorylating other proteins and substrates, changing their activity. Protein kinase A catal ...
,
PRKACB,
PRKACG
* regulatory subunit type I -
PRKAR1A
cAMP-dependent protein kinase type I-alpha regulatory subunit is an enzyme that in humans is encoded by the ''PRKAR1A'' gene.
Function
cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by act ...
,
PRKAR1B
cAMP-dependent protein kinase type I-beta regulatory subunit is an enzyme that in humans is encoded by the ''PRKAR1B'' gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a ...
* regulatory subunit type II -
PRKAR2A
cAMP-dependent protein kinase type II-alpha regulatory subunit is an enzyme that in humans is encoded by the ''PRKAR2A'' gene.
Function
cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by act ...
,
PRKAR2B
cAMP-dependent protein kinase type II-beta regulatory subunit is an enzyme that in humans is encoded by the ''PRKAR2B'' gene.
Function
cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by acti ...
Mechanism
Activation
PKA is also commonly known as cAMP-dependent protein kinase, because it has traditionally been thought to be activated through release of the catalytic subunits when levels of the
second messenger
Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form of cell signaling, encompassing both first m ...
called
cyclic adenosine monophosphate
Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine tri ...
, or cAMP, rise in response to a variety of signals. However, recent studies evaluating the intact holoenzyme complexes, including regulatory AKAP-bound signalling complexes, have suggested that the local sub cellular activation of the catalytic activity of PKA might proceed without physical separation of the regulatory and catalytic components, especially at physiological concentrations of cAMP.
In contrast, experimentally induced supra physiological concentrations of cAMP, meaning higher than normally observed in cells, are able to cause separation of the holoenzymes, and release of the catalytic subunits.
Extracellular hormones, such as
glucagon
Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises the concentration of glucose and fatty acids in the bloodstream and is considered to be the main catabolic hormone of the body. It is also used as a Glucagon (medic ...
and
epinephrine
Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands a ...
, begin an intracellular signalling cascade that triggers protein kinase A activation by first binding to a
G protein–coupled receptor
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related ...
(GPCR) on the target cell. When a GPCR is activated by its extracellular ligand, a
conformational change
In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors.
A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or othe ...
is induced in the receptor that is transmitted to an attached intracellular
heterotrimeric G protein complex by
protein domain dynamics. The
Gs alpha subunit of the stimulated G protein complex exchanges
GDP for
GTP in a reaction catalyzed by the GPCR and is released from the complex. The activated Gs alpha subunit binds to and activates an enzyme called
adenylyl cyclase
Adenylate cyclase (EC 4.6.1.1, also commonly known as adenyl cyclase and adenylyl cyclase, abbreviated AC) is an enzyme with systematic name ATP diphosphate-lyase (cyclizing; 3′,5′-cyclic-AMP-forming). It catalyzes the following reaction:
:A ...
, which, in turn, catalyzes the conversion of
ATP into cAMP, directly increasing the cAMP level. Four cAMP molecules are able to bind to the two regulatory subunits. This is done by two cAMP molecules binding to each of the two cAMP binding sites (CNB-B and CNB-A) which induces a conformational change in the regulatory subunits of PKA, causing the subunits to detach and unleash the two, now activated, catalytic subunits.
Once released from inhibitory regulatory subunit, the catalytic subunits can go on to
phosphorylate
In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols:
:
This equation can be writt ...
a number of other proteins in the minimal substrate context Arg-Arg-X-Ser/Thr., although they are still subject to other layers of regulation, including modulation by the heat stable pseudosubstrate inhibitor of PKA, termed PKI.
Below is a list of the steps involved in PKA activation:
# Cytosolic
cAMP increases
# Two cAMP molecules bind to each PKA regulatory subunit
# The regulatory subunits move out of the active sites of the catalytic subunits and the R2C2 complex dissociates
# The free catalytic subunits interact with proteins to phosphorylate Ser or Thr residues.
Catalysis
The liberated catalytic subunits can then catalyze the transfer of ATP terminal phosphates to
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
substrates at
serine
Serine
(symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − ...
, or
threonine
Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form when dissolved in water), a carboxyl group (which is in the deprotonated −COO− ...
residues. This
phosphorylation
In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols:
:
This equation can be writ ...
usually results in a change in activity of the substrate. Since PKAs are present in a variety of cells and act on different substrates, PKA regulation and cAMP regulation are involved in many different pathways.
The mechanisms of further effects may be divided into direct protein phosphorylation and protein synthesis:
*In direct protein phosphorylation, PKA directly either increases or decreases the activity of a protein.
*In protein synthesis, PKA first directly activates
CREB
CREB-TF (CREB, cAMP response element-binding protein) is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first des ...
, which binds the
cAMP response element (CRE), altering the
transcription and therefore the synthesis of the protein. In general, this mechanism takes more time (hours to days).
Phosphorylation mechanism
The Serine/Threonine residue of the substrate peptide is orientated in such a way that the hydroxyl group faces the gamma phosphate group of the bound ATP molecule. Both the substrate, ATP, and two Mg2+ ions form intensive contacts with the catalytic subunit of PKA. In the active conformation, the C helix packs against the N-terminal lobe and the Aspartate residue of the conserved DFG motif chelates the Mg2+ ions, assisting in positioning the ATP substrate. The triphosphate group of ATP points out of the adenosine pocket for the transfer of gamma-phosphate to the Serine/Threonine of the peptide substrate. There are several conserved residues, include Glutamate (E) 91 and Lysine (K) 72, that mediate the positioning of alpha- and beta-phosphate groups. The hydroxyl group of the peptide substrate's Serine/Threonine attacks the gamma phosphate group at the phosphorus via an SN2 nucleophilic reaction, which results in the transfer of the terminal phosphate to the peptide substrate and cleavage of the phosphodiester bond between the beta-phosphate and the gamma-phosphate groups. PKA acts as a model for understanding
protein kinase
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them ( phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a f ...
biology, with the position of the conserved residues helping to distinguish the active
protein kinase
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them ( phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a f ...
and inactive
pseudokinase members of the human kinome.
Inactivation

Downregulation of protein kinase A occurs by a feedback mechanism and uses a number of cAMP hydrolyzing
phosphodiesterase (PDE) enzymes, which belong to the substrates activated by PKA. Phosphodiesterase quickly converts cAMP to AMP, thus reducing the amount of cAMP that can activate protein kinase A. PKA is also regulated by a complex series of phosphorylation events, which can include modification by autophosphorylation and phosphorylation by regulatory kinases, such as PDK1.
Thus, PKA is controlled, in part, by the levels of
cAMP. Also, the catalytic subunit itself can be down-regulated by phosphorylation.
Anchorage
The regulatory subunit dimer of PKA is important for localizing the kinase inside the cell. The dimerization and docking (D/D) domain of the dimer binds to the A-kinase binding (AKB) domain of
A-kinase anchor protein (AKAP). The AKAPs localize PKA to various locations (e.g., plasma membrane, mitochondria, etc.) within the cell.
AKAPs bind many other signaling proteins, creating a very efficient signaling hub at a certain location within the cell. For example, an AKAP located near the nucleus of a heart muscle cell would bind both PKA and phosphodiesterase (hydrolyzes cAMP), which allows the cell to limit the productivity of PKA, since the catalytic subunit is activated once cAMP binds to the regulatory subunits.
Function
PKA phosphorylates
proteins
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, re ...
that have the motif Arginine-Arginine-X-Serine exposed, in turn (de)activating the proteins. Many possible substrates of PKA exist; a list of such substrates is available and maintained by the
NIH.
As protein expression varies from cell type to cell type, the proteins that are available for phosphorylation will depend upon the cell in which PKA is present. Thus, the effects of PKA activation vary with
cell type:
Overview table
In adipocytes and hepatocytes
Epinephrine
Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands a ...
and
glucagon
Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises the concentration of glucose and fatty acids in the bloodstream and is considered to be the main catabolic hormone of the body. It is also used as a Glucagon (medic ...
affect the activity of protein kinase A by changing the levels of cAMP in a cell via the G-protein mechanism, using
adenylate cyclase. Protein kinase A acts to phosphorylate many enzymes important in metabolism. For example, protein kinase A phosphorylates
acetyl-CoA carboxylase and
pyruvate dehydrogenase. Such covalent modification has an inhibitory effect on these enzymes, thus inhibiting
lipogenesis
In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into Adipose tissue, fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in adipose, fat. Lipogenesis encompasses both fatty aci ...
and promoting net
gluconeogenesis
Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In verte ...
. Insulin, on the other hand, decreases the level of phosphorylation of these enzymes, which instead promotes lipogenesis. Recall that gluconeogenesis does not occur in myocytes.
In nucleus accumbens neurons
PKA helps transfer/translate the
dopamine
Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. It is an amine synthesized ...
signal into cells in the
nucleus accumbens
The nucleus accumbens (NAc or NAcc; also known as the accumbens nucleus, or formerly as the ''nucleus accumbens septi'', Latin for ' nucleus adjacent to the septum') is a region in the basal forebrain rostral to the preoptic area of the hypo ...
, which mediates reward, motivation, and
task salience. The vast majority of reward perception involves neuronal activation in the nucleus accumbens, some examples of which include sex, recreational drugs, and food. Protein Kinase A signal transduction pathway helps in modulation of ethanol consumption and its sedative effects. A mouse study reports that mice with genetically reduced cAMP-PKA signalling results into less consumption of ethanol and are more sensitive to its sedative effects.
In skeletal muscle
PKA is directed to specific sub-cellular locations after tethering to
AKAPs.
Ryanodine receptor (RyR) co-localizes with the muscle AKAP and RyR phosphorylation and efflux of Ca
2+ is increased by localization of PKA at RyR by AKAPs.
In cardiac muscle
In a cascade mediated by a
GPCR known as
β1 adrenoceptor, activated by
catecholamine
A catecholamine (; abbreviated CA), most typically a 3,4-dihydroxyphenethylamine, is a monoamine neurotransmitter, an organic compound that has a catechol (benzene with two hydroxyl side groups next to each other) and a side-chain amine.
Cate ...
s (notably
norepinephrine
Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic compound, organic chemical in the catecholamine family that functions in the brain and human body, body as a hormone, neurotransmitter and neuromodulator. The ...
), PKA gets activated and phosphorylates numerous targets, namely:
L-type calcium channels,
phospholamban,
troponin I
Troponin I is a cardiac and skeletal muscle protein family. It is a part of the troponin protein complex, where it binds to actin in thin myofilaments to hold the actin-tropomyosin complex in place. Troponin I prevents myosin from binding to act ...
,
myosin binding protein C, and
potassium channel
Potassium channels are the most widely distributed type of ion channel found in virtually all organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of ...
s. This increases
inotropy as well as
lusitropy, increasing contraction force as well as enabling the muscles to relax faster.
In memory formation
PKA has always been considered important in formation of a
memory
Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembe ...
. In the
fruit fly, reductions in expression activity of DCO (PKA catalytic subunit encoding gene) can cause severe learning disabilities, middle term memory and short term memory. Long term memory is dependent on the CREB transcription factor, regulated by PKA. A study done on drosophila reported that an increase in PKA activity can affect short term memory. However, a decrease in PKA activity by 24% inhibited learning abilities and a decrease by 16% affected both learning ability and memory retention. Formation of a normal memory is highly sensitive to PKA levels.
See also
*
Protein kinase
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them ( phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a f ...
*
Signal transduction
Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a biochemical cascade, series of molecular events. Proteins responsible for detecting stimuli are generally termed receptor (biology), rece ...
*
G protein-coupled receptor
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related ...
*
Serine/threonine-specific protein kinase
A serine/threonine protein kinase () is a kinase enzyme, in particular a protein kinase, that phosphorylation, phosphorylates the hydroxyl, OH group of the amino acid, amino-acid residues serine or threonine, which have similar side chains. ...
*
Myosin light-chain kinase
*
cAMP-dependent pathway
In the field of molecular biology, the cAMP-dependent pathway, also known as the adenylyl cyclase pathway, is a G protein-coupled receptor-triggered signaling cascade used in cell communication.
Discovery
cAMP was discovered by Earl Sutherla ...
References
External links
*
''Drosophila'' ''cAMP-dependent protein kinase 1'' - The Interactive FlycAMP-dependent protein kinase: PDB Molecule of the Month*
Notes
{{Portal bar, Biology, border=no
Signal transduction
Protein kinases
EC 2.7.11