Four Forces
   HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, the fundamental interactions or fundamental forces are interactions in nature that appear not to be reducible to more basic interactions. There are four fundamental interactions known to exist: *
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
*
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
*
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
*
strong interaction In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
The gravitational and electromagnetic interactions produce long-range forces whose effects can be seen directly in everyday life. The strong and weak interactions produce forces at subatomic scales and govern nuclear interactions inside
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s. Some scientists hypothesize that a
fifth force In physics, a fifth force refers to a hypothetical fundamental interaction (also known as fundamental force) beyond the four known interactions in nature: gravitational, electromagnetic, strong nuclear, and weak nuclear forces. Some speculativ ...
might exist, but these hypotheses remain speculative. Each of the known fundamental interactions can be described mathematically as a ''
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''. The gravitational interaction is attributed to the
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
of
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
, described by Einstein's
general theory of relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physi ...
. The other three are discrete
quantum fields In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatom ...
, and their interactions are mediated by
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a c ...
s described by the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
of
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
. Within the Standard Model, the strong interaction is carried by a particle called the
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
and is responsible for
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s binding together to form
hadron In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
s, such as
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s and
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s. As a residual effect, it creates the
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both ...
that binds the latter particles to form
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. Aft ...
. The weak interaction is carried by particles called
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
, and also acts on the nucleus of
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s, mediating
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. The electromagnetic force, carried by the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
, creates
electric Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s, which are responsible for the attraction between
orbital Orbital may refer to: Sciences Chemistry and physics * Atomic orbital * Molecular orbital * Hybrid orbital Astronomy and space flight * Orbit ** Earth orbit Medicine and physiology * Orbit (anatomy), also known as the ''orbital bone'' * Orbitof ...
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s and atomic nuclei which holds atoms together, as well as
chemical bonding A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons as in ...
and
electromagnetic wave In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ...
s, including
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
, and forms the basis for electrical technology. Although the electromagnetic force is far stronger than gravity, it tends to cancel itself out within large objects, so over large (astronomical) distances gravity tends to be the dominant force, and is responsible for holding together the large scale structures in the universe, such as planets, stars, and galaxies. The historical success of models that show relationships between fundamental interactions have led to efforts to go beyond the Standard Model and combine all four forces in to a
theory of everything A theory of everything (TOE), final theory, ultimate theory, unified field theory, or master theory is a hypothetical singular, all-encompassing, coherent theoretical physics, theoretical framework of physics that fully explains and links togeth ...
.


History


Classical theory

In his 1687 theory,
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
postulated space as an infinite and unalterable physical structure existing before, within, and around all objects while their states and relations unfold at a constant pace everywhere, thus
absolute space and time Absolute space and time is a concept in physics and philosophy about the properties of the universe. In physics, absolute space and time may be a preferred frame. Early concept A version of the concept of absolute space (in the sense of a prefe ...
. Inferring that all objects bearing mass approach at a constant rate, but collide by impact proportional to their masses, Newton inferred that matter exhibits an attractive force. His
law of universal gravitation Newton's law of universal gravitation describes gravity as a force by stating that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the s ...
implied there to be instant interaction among all objects. As conventionally interpreted, Newton's theory of motion modelled a ''
central force In classical mechanics, a central force on an object is a force that is directed towards or away from a point called center of force. \mathbf(\mathbf) = F( \mathbf ) where F is a force vector, ''F'' is a scalar valued force function (whose abso ...
'' without a communicating medium. Thus Newton's theory violated the tradition, going back to Descartes, that there should be no
action at a distance Action at a distance is the concept in physics that an object's motion (physics), motion can be affected by another object without the two being in Contact mechanics, physical contact; that is, it is the concept of the non-local interaction of ob ...
. Conversely, during the 1820s, when explaining magnetism,
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English chemist and physicist who contributed to the study of electrochemistry and electromagnetism. His main discoveries include the principles underlying electromagnetic inducti ...
inferred a ''field'' filling space and transmitting that force. Faraday conjectured that ultimately, all forces unified into one. In 1873,
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
unified electricity and magnetism as effects of an electromagnetic field whose third consequence was light, travelling at constant speed in vacuum. If his electromagnetic field theory held true in all inertial frames of reference, this would contradict Newton's theory of motion, which relied on
Galilean relativity Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his ''Dialogue Concerning the Two Chief World Systems'' using t ...
. If, instead, his field theory only applied to reference frames at rest relative to a mechanical
luminiferous aether Luminiferous aether or ether (''luminiferous'' meaning 'light-bearing') was the postulated Transmission medium, medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empt ...
—presumed to fill all space whether within matter or in vacuum and to manifest the electromagnetic field—then it could be reconciled with Galilean relativity and Newton's laws. (However, such a "Maxwell aether" was later disproven; Newton's laws did, in fact, have to be replaced.)


Standard Model

The Standard Model of particle physics was developed throughout the latter half of the 20th century. In the Standard Model, the electromagnetic, strong, and weak interactions associate with elementary particles, whose behaviours are modelled in quantum mechanics (QM). For predictive success with QM's Probability, probabilistic outcomes,
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
conventionally models QM event (particle physics), events across a field set to special theory of relativity, special relativity, altogether relativistic quantum field theory (QFT). Force particles, called gauge bosons—''force carriers'' or ''messenger particles'' of underlying fields—interact with matter particles, called fermions. Baryonic matter, Everyday matter is atoms, composed of three fermion types: quark, up-quarks and down-quarks constituting, as well as electrons orbiting, the atom's nucleus. Atoms interact, form molecules, and manifest further properties through electromagnetic interactions among their electrons absorbing and emitting photons, the electromagnetic field's force carrier, which if unimpeded traverse potentially infinite distance. Electromagnetism's QFT is quantum electrodynamics (QED). The force carriers of the weak interaction are the massive
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
. Electroweak theory (EWT) covers both electromagnetism and the weak interaction. At the high temperatures shortly after the Big Bang, the weak interaction, the electromagnetic interaction, and the Higgs boson were originally mixed components of a different set of ancient pre-symmetry-breaking fields. As the early universe cooled, these fields symmetry breaking, split into the long-range electromagnetic interaction, the short-range weak interaction, and the Higgs boson. In the Higgs mechanism, the Higgs field manifests Higgs bosons that interact with some quantum particles in a way that endows those particles with mass. The strong interaction, whose force carrier is the
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
, traversing minuscule distance among quarks, is modeled in quantum chromodynamics (QCD). EWT, QCD, and the Higgs mechanism comprise
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
'
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
(SM). Predictions are usually made using calculational approximation methods, although such perturbation theory (quantum mechanics), perturbation theory is inadequate to model some experimental observations (for instance bound states and solitons). Still, physicists widely accept the Standard Model as science's most experimentally confirmed theory. Beyond the Standard Model, some theorists work to unite the electroweak and strong interaction, strong interactions within a Grand Unified Theory (GUT). Some attempts at GUTs hypothesize "shadow" particles, such that every known fermion, matter particle associates with an undiscovered Gauge boson, force particle, and vice versa, altogether supersymmetry (SUSY). Other theorists seek to quantize the gravitational field by the modelling behaviour of its hypothetical force carrier, the graviton and achieve quantum gravity (QG). One approach to QG is loop quantum gravity (LQG). Still other theorists seek both QG and GUT within one framework, reducing all four fundamental interactions to a Theory of Everything (ToE). The most prevalent aim at a ToE is string theory, although to model fermion, matter particles, it added supersymmetry, SUSY to Gauge boson, force particles—and so, strictly speaking, became superstring theory. Multiple, seemingly disparate superstring theories were unified on a backbone, M-theory. Theories beyond the Standard Model remain highly speculative, lacking great experimental support.


Overview of the fundamental interactions

In the Model (abstract), conceptual model of fundamental interactions, matter consists of fermions, which carry Physical property, properties called charge (physics), charges and Spin (physics), spin ± (intrinsic angular momentum ±, where ħ is the reduced Planck constant). They attract or repel each other by exchanging bosons. The interaction of any pair of fermions in perturbation theory can then be modelled thus: : Two fermions go in → ''interaction'' by boson exchange → two changed fermions go out. The exchange of bosons always carries energy and momentum between the fermions, thereby changing their speed and direction. The exchange may also transport a charge between the fermions, changing the charges of the fermions in the process (e.g., turn them from one type of fermion to another). Since bosons carry one unit of angular momentum, the fermion's spin direction will flip from + to − (or vice versa) during such an exchange (in units of the reduced Planck constant). Since such interactions result in a change in momentum, they can give rise to classical Newtonian forces. In quantum mechanics, physicists often use the terms "force" and "interaction" interchangeably; for example, the weak interaction is sometimes referred to as the "weak force". According to the present understanding, there are four fundamental interactions or forces: gravitation, electromagnetism, the
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
, and the strong interaction. Their magnitude and behaviour vary greatly, as described in the table below. Modern physics attempts to explain every observed natural phenomenon, physical phenomenon by these fundamental interactions. Moreover, reducing the number of different interaction types is seen as desirable. Two cases in point are the unified field theory, unification of: * Electric force, Electric and magnetic force into electromagnetism; * The electromagnetic interaction and the weak interaction into the electroweak interaction; see below. Both magnitude ("relative strength") and "range" of the associated potential, as given in the table, are meaningful only within a rather complex theoretical framework. The table below lists properties of a conceptual scheme that remains the subject of ongoing research. The modern (perturbative) quantum mechanics, quantum mechanical view of the fundamental forces other than gravity is that particles of matter (fermions) do not directly interact with each other, but rather carry a charge, and exchange virtual particles (gauge bosons), which are the interaction carriers or force mediators. For example, photons mediate the interaction of electric charges, and gluons mediate the interaction of color charges. The full theory includes perturbations beyond simply fermions exchanging bosons; these additional perturbations can involve bosons that exchange fermions, as well as the creation or destruction of particles: see Feynman diagrams for examples.


Interactions


Gravity

''Gravitation'' is the weakest of the four interactions at the atomic scale, where electromagnetic interactions dominate. Gravitation is the most important of the four fundamental forces for astronomical objects over astronomical distances for two reasons. First, gravitation has an infinite effective range, like electromagnetism but unlike the strong and weak interactions. Second, gravity always attracts and never repels; in contrast, astronomical bodies tend toward a near-neutral net electric charge, such that the attraction to one type of charge and the repulsion from the opposite charge mostly cancel each other out. Even though electromagnetism is far stronger than gravitation, electrostatic attraction is not relevant for large celestial bodies, such as planets, stars, and galaxies, simply because such bodies contain equal numbers of protons and electrons and so have a net electric charge of zero. Nothing "cancels" gravity, since it is only attractive, unlike electric forces which can be attractive or repulsive. On the other hand, all objects having mass are subject to the gravitational force, which only attracts. Therefore, only gravitation matters on the large-scale structure of the universe. The long range of gravitation makes it responsible for such large-scale phenomena as the structure of galaxies and black holes and, being only attractive, it slows down the expansion of the universe. Gravitation also explains astronomical phenomena on more modest scales, such as planetary orbits, as well as everyday experience: objects fall; heavy objects act as if they were glued to the ground, and animals can only jump so high. Gravitation was the first interaction to be described mathematically. In ancient times, Aristotle hypothesized that objects of different masses fall at different rates. During the Scientific Revolution, Galileo Galilei experimentally determined that this hypothesis was wrong under certain circumstances—neglecting the friction due to air resistance and buoyancy forces if an atmosphere is present (e.g. the case of a dropped air-filled balloon vs a water-filled balloon), all objects accelerate toward the Earth at the same rate. Isaac Newton's law of Universal Gravitation (1687) was a good approximation of the behaviour of gravitation. Present-day understanding of gravitation stems from Einstein's General Theory of Relativity of 1915, a more accurate (especially for cosmology, cosmological masses and distances) description of gravitation in terms of the geometry of
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
. Merging general relativity and quantum mechanics (or quantum field theory) into a more general theory of quantum gravity is an area of active research. It is hypothesized that gravitation is mediated by a massless Spin (physics)#Fermions and bosons, spin-2 particle called the graviton. Although general relativity has been experimentally confirmed (at least for weak fields, i.e. not black holes) on all but the smallest scales, there are alternatives to general relativity. These theories must reduce to general relativity in some limit, and the focus of observational work is to establish limits on what deviations from general relativity are possible. Proposed extra dimensions could explain why the gravity force is so weak.


Electroweak interaction

Electromagnetism and weak interaction appear to be very different at everyday low energies. They can be modeled using two different theories. However, above unification energy, on the order of 100 GeV, they would merge into a single electroweak force. The electroweak theory is very important for modern cosmology, particularly on how the universe evolved. This is because shortly after the Big Bang, when the temperature was still above approximately 1015 Kelvin, K, the electromagnetic force and the weak force were still merged as a combined electroweak force. For contributions to the unification of the weak and electromagnetic interaction between particle physics, elementary particles, Abdus Salam, Sheldon Glashow and Steven Weinberg were awarded the Nobel Prize in Physics in 1979.


Electromagnetism

Electromagnetism is the force that acts between electric charge, electrically charged particles. This phenomenon includes the electrostatic force acting between charged particles at rest, and the combined effect of electric and Magnetism, magnetic forces acting between charged particles moving relative to each other. Electromagnetism has an infinite range, as gravity does, but is vastly stronger. It is the force that binds electrons to atoms, and it chemical bond, holds molecules together. It is responsible for everyday phenomena like light, magnets, electricity, and friction. Electromagnetism fundamentally determines all macroscopic, and many atomic-level, properties of the chemical elements. In a four kilogram (~1 gallon) jug of water, there is
4000 \ \mbox\,\rm_2 \rm \cdot \frac \cdot \frac \cdot \frac = 2.1 \times 10^ C \ \, \
of total electron charge. Thus, if we place two such jugs a meter apart, the electrons in one of the jugs repel those in the other jug with a force of
\frac = 4.1 \times 10^ \mathrm.
This force is many times larger than the weight of the planet Earth. The
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. Aft ...
in one jug also repel those in the other with the same force. However, these repulsive forces are canceled by the attraction of the electrons in jug A with the nuclei in jug B and the attraction of the nuclei in jug A with the electrons in jug B, resulting in no net force. Electromagnetic forces are tremendously stronger than gravity, but tend to cancel out so that for astronomical-scale bodies, gravity dominates. Electrical and magnetic phenomena have been observed since ancient times, but it was only in the 19th century
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
discovered that electricity and magnetism are two aspects of the same fundamental interaction. By 1864, Maxwell's equations had rigorously quantified this unified interaction. Maxwell's theory, restated using vector calculus, is the classical theory of electromagnetism, suitable for most technological purposes. The constant speed of light in vacuum (customarily denoted with a lowercase letter ') can be derived from Maxwell's equations, which are consistent with the theory of special relativity. Albert Einstein's 1905 theory of special relativity, however, which follows from the observation that the speed of light is constant no matter how fast the observer is moving, showed that the theoretical result implied by Maxwell's equations has profound implications far beyond electromagnetism on the very nature of time and space. In another work that departed from classical electro-magnetism, Einstein also explained the photoelectric effect by utilizing Max Planck's discovery that light was transmitted in 'quanta' of specific energy content based on the frequency, which we now call
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s. Starting around 1927, Paul Dirac combined quantum mechanics with the relativistic theory of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
. Further work in the 1940s, by Richard Feynman, Freeman Dyson, Julian Schwinger, and Sin-Itiro Tomonaga, completed this theory, which is now called quantum electrodynamics, the revised theory of electromagnetism. Quantum electrodynamics and quantum mechanics provide a theoretical basis for electromagnetic behavior such as quantum tunneling, in which a certain percentage of electrically charged particles move in ways that would be impossible under the classical electromagnetic theory, that is necessary for everyday electronic devices such as transistors to function.


Weak interaction

The ''weak interaction'' or ''weak nuclear force'' is responsible for some nuclear phenomena such as beta decay. Electromagnetism and the weak force are now understood to be two aspects of a unified electroweak interaction — this discovery was the first step toward the unified theory known as the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
. In the theory of the electroweak interaction, the carriers of the weak force are the massive gauge bosons called the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
. The weak interaction is the only known interaction that does not conserve parity (physics), parity; it is left–right asymmetric. The weak interaction even CP-violation, violates CP symmetry but does CPT symmetry, conserve CPT.


Strong interaction

The ''strong interaction'', or ''strong nuclear force'', is the most complicated interaction, mainly because of the way it varies with distance. The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 10−15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At distances less than 0.7 fm, the nuclear force becomes repulsive. This repulsive component is responsible for the physical size of nuclei, since the nucleons can come no closer than the force allows. After the nucleus was discovered in 1908, it was clear that a new force, today known as the nuclear force, was needed to overcome the Electrostatics, electrostatic repulsion, a manifestation of electromagnetism, of the positively charged protons. Otherwise, the nucleus could not exist. Moreover, the force had to be strong enough to squeeze the protons into a volume whose diameter is about 10−15 metre, m, much smaller than that of the entire atom. From the short range of this force, Hideki Yukawa predicted that it was associated with a massive force particle, whose mass is approximately 100 MeV. The 1947 discovery of the pion ushered in the modern era of particle physics. Hundreds of hadrons were discovered from the 1940s to 1960s, and an Regge theory, extremely complicated theory of hadrons as strongly interacting particles was developed. Most notably: * The pions were understood to be oscillations of Vacuum expectation value, vacuum condensates; * Jun John Sakurai proposed the rho and omega vector bosons to be Yang–Mills theory, force carrying particles for approximate symmetries of isospin and hypercharge; * Geoffrey Chew, Edward K. Burdett and Steven Frautschi grouped the heavier hadrons into families that could be understood as vibrational and rotational excitations of string theory, strings. While each of these approaches offered insights, no approach led directly to a fundamental theory. Murray Gell-Mann along with George Zweig first proposed fractionally charged quarks in 1961. Throughout the 1960s, different authors considered theories similar to the modern fundamental theory of quantum chromodynamics, quantum chromodynamics (QCD) as simple models for the interactions of quarks. The first to hypothesize the gluons of QCD were Moo-Young Han and Yoichiro Nambu, who introduced the quark color charge. Han and Nambu hypothesized that it might be associated with a force-carrying field. At that time, however, it was difficult to see how such a model could permanently confine quarks. Han and Nambu also assigned each quark color an integer electrical charge, so that the quarks were fractionally charged only on average, and they did not expect the quarks in their model to be permanently confined. In 1971, Murray Gell-Mann and Harald Fritzsch proposed that the Han/Nambu color gauge field was the correct theory of the short-distance interactions of fractionally charged quarks. A little later, David Gross, Frank Wilczek, and David Politzer discovered that this theory had the property of asymptotic freedom, allowing them to make contact with deep inelastic scattering, experimental evidence. They concluded that QCD was the complete theory of the strong interactions, correct at all distance scales. The discovery of asymptotic freedom led most physicists to accept QCD since it became clear that even the long-distance properties of the strong interactions could be consistent with experiment if the quarks are permanently color confinement, confined: the strong force increases indefinitely with distance, trapping quarks inside the hadrons. Assuming that quarks are confined, Mikhail Shifman, Arkady Vainshtein and Valentine Zakharov were able to compute the properties of many low-lying hadrons directly from QCD, with only a few extra parameters to describe the vacuum. In 1980, Kenneth G. Wilson published computer calculations based on the first principles of QCD, establishing, to a level of confidence tantamount to certainty, that QCD will confine quarks. Since then, QCD has been the established theory of strong interactions. QCD is a theory of fractionally charged quarks interacting by means of 8 bosonic particles called gluons. The gluons also interact with each other, not just with the quarks, and at long distances the lines of force collimate into strings, loosely modeled by a linear potential, a constant attractive force. In this way, the mathematical theory of QCD not only explains how quarks interact over short distances but also the string-like behavior, discovered by Chew and Frautschi, which they manifest over longer distances.


Higgs interaction

Conventionally, the Higgs interaction is not counted among the four fundamental forces. Nonetheless, although not a gauge theory, gauge interaction nor generated by any diffeomorphism symmetry, the Higgs field's cubic Yukawa interaction, Yukawa coupling produces a weakly attractive fifth interaction. After spontaneous symmetry breaking via the Higgs mechanism, Yukawa terms remain of the form : \frac \bar \phi' \psi = \frac \bar \phi' \psi, with Yukawa coupling \lambda_i, particle mass m_i (in Electronvolt, eV), and Higgs vacuum expectation value . Hence coupled particles can exchange a virtual particle, virtual Higgs boson, yielding Yukawa interaction#Classical potential, classical potentials of the form : V(r) = - \frac \frac e^, with Higgs mass . Because the reduced Compton wavelength of the Higgs boson is so small (, comparable to the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
), this potential has an effective range of a few attometers. Between two electrons, it begins roughly 1011 times weaker than the
weak interaction In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
, and grows exponentially weaker at non-zero distances.


Beyond the Standard Model

The fundamental forces may become unified into a single force at very high energies and on a minuscule scale, the Planck scale. Particle accelerators cannot produce the enormous energies required to experimentally probe this regime. The weak and electromagnetic forces have already been unified with the electroweak interaction, electroweak theory of Sheldon Glashow, Abdus Salam, and Steven Weinberg, for which they received the 1979 Nobel Prize in physics. Numerous theoretical efforts have been made to systematize the existing four fundamental interactions on the model of electroweak unification. Grand Unified Theories (GUTs) are proposals to show that each of the three fundamental interactions described by the Standard Model is a different manifestation of a single interaction with symmetry (physics), symmetries that break down and create separate interactions below some extremely high level of energy. GUTs are also expected to predict some of the relationships between constants of nature that the Standard Model treats as unrelated and gauge coupling unification for the relative strengths of the electromagnetic, weak, and strong forces. A so-called
theory of everything A theory of everything (TOE), final theory, ultimate theory, unified field theory, or master theory is a hypothetical singular, all-encompassing, coherent theoretical physics, theoretical framework of physics that fully explains and links togeth ...
, which would integrate GUTs with a quantum gravity theory, faces a greater barrier because no quantum gravity theory (e.g., string theory, loop quantum gravity, and twistor theory) has secured wide acceptance. Some theories look for a graviton to complete the Standard Model list of force-carrying particles, while others, like loop quantum gravity, emphasize the possibility that time-space itself may have a quantum aspect to it. Some theories beyond the Standard Model include a hypothetical
fifth force In physics, a fifth force refers to a hypothetical fundamental interaction (also known as fundamental force) beyond the four known interactions in nature: gravitational, electromagnetic, strong nuclear, and weak nuclear forces. Some speculativ ...
, and the search for such a force is an ongoing line of experimental physics research. In supersymmetric theories, some particles, known as Moduli (physics), moduli, acquire their masses only through supersymmetry breaking effects and can mediate new forces. Another reason to look for new forces is the discovery that the expansion of the universe is accelerating (also known as dark energy), creating a need to explain a nonzero cosmological constant and possibly other modifications of general relativity. Fifth forces have also been suggested to explain phenomena such as Charge parity, CP violations, dark matter, and dark flow.


See also

* Quintessence (physics), Quintessence, a hypothesized fifth force * Gerardus 't Hooft * Edward Witten * Howard Georgi


References


Bibliography

* 2nd ed. * * While all interactions are discussed, discussion is especially thorough on the weak. * * * * * {{DEFAULTSORT:Fundamental Interaction Fundamental interactions, Physical phenomena