In
mathematics, a filtered algebra is a generalization of the notion of a
graded algebra
In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that R_i R_j \subseteq R_. The index set is usually the set of nonnegative integers or the ...
. Examples appear in many branches of
mathematics, especially in
homological algebra
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology ...
and
representation theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
.
A filtered algebra over the
field is an
algebra
Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
over
that has an increasing sequence
of
subspaces of
such that
:
and that is compatible with the multiplication in the following sense:
:
Associated graded algebra
In general there is the following construction that produces a graded algebra out of a filtered algebra.
If
is a filtered algebra then the ''
associated graded algebra In mathematics, the associated graded ring of a ring ''R'' with respect to a proper ideal ''I'' is the graded ring:
:\operatorname_I R = \oplus_^\infty I^n/I^.
Similarly, if ''M'' is a left ''R''-module, then the associated graded module is the ...
''
is defined as follows:
The multiplication is well-defined and endows
with the structure of a graded algebra, with gradation
Furthermore if
is
associative
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
then so is
. Also if
is
unital, such that the unit lies in
, then
will be unital as well.
As algebras
and
are distinct (with the exception of the trivial case that
is graded) but as vector spaces they are
isomorphic. (One can
prove
Proof most often refers to:
* Proof (truth), argument or sufficient evidence for the truth of a proposition
* Alcohol proof, a measure of an alcoholic drink's strength
Proof may also refer to:
Mathematics and formal logic
* Formal proof, a con ...
by
induction that
is isomorphic to
as vector spaces).
Examples
Any
graded algebra
In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that R_i R_j \subseteq R_. The index set is usually the set of nonnegative integers or the ...
graded by
, for example
, has a filtration given by
.
An example of a filtered algebra is the
Clifford algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hyperc ...
of a vector space
endowed with a
quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example,
:4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong to ...
The associated graded algebra is
, the
exterior algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is ...
of
The
symmetric algebra
In mathematics, the symmetric algebra (also denoted on a vector space over a field is a commutative algebra over that contains , and is, in some sense, minimal for this property. Here, "minimal" means that satisfies the following universa ...
on the dual of an
affine space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relat ...
is a filtered algebra of
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An ex ...
s; on a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
, one instead obtains a graded algebra.
The
universal enveloping algebra
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra.
Universal enveloping algebras are used in the representa ...
of a
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi iden ...
is also naturally filtered. The
PBW theorem states that the associated graded algebra is simply
.
Scalar
differential operators on a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
form a filtered algebra where the filtration is given by the degree of differential operators. The associated graded algebra is the
commutative algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Promi ...
of smooth functions on the
cotangent bundle
In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This ...
which are polynomial along the fibers of the projection
.
The
group algebra of a
group with a
length function is a filtered algebra.
See also
*
Filtration (mathematics) In mathematics, a filtration \mathcal is an indexed family (S_i)_ of subobjects of a given algebraic structure S, with the index i running over some totally ordered index set I, subject to the condition that
::if i\leq j in I, then S_i\subsete ...
*
Length function
References
*
{{PlanetMath attribution, id=3938, title=Filtered algebra
Algebras
Homological algebra