HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, F4 is a
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
and also its
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
f4. It is one of the five exceptional
simple Lie group In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symm ...
s. F4 has rank 4 and dimension 52. The compact form is simply connected and its
outer automorphism group In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has ...
is the
trivial group In mathematics, a trivial group or zero group is a group that consists of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usu ...
. Its
fundamental representation In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defi ...
is 26-dimensional. The compact real form of F4 is the
isometry group In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element ...
of a 16-dimensional
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
known as the
octonionic projective plane In mathematics, the Cayley plane (or octonionic projective plane) P2(O) is a projective plane over the octonions.Baez (2002). The Cayley plane was discovered in 1933 by Ruth Moufang, and is named after Arthur Cayley for his 1845 paper describing ...
OP2. This can be seen systematically using a construction known as the ''magic square'', due to
Hans Freudenthal Hans Freudenthal (17 September 1905 – 13 October 1990) was a Jewish-German, Jewish German-born Netherlands, Dutch mathematician. He made substantial contributions to algebraic topology and also took an interest in literature, philosophy, histor ...
and
Jacques Tits Jacques Tits () (12 August 1930 – 5 December 2021) was a Belgian-born French mathematician who worked on group theory and incidence geometry. He introduced Tits buildings, the Tits alternative, the Tits group, and the Tits metric. Early life ...
. There are 3 real forms: a compact one, a split one, and a third one. They are the isometry groups of the three real Albert algebras. The F4 Lie algebra may be constructed by adding 16 generators transforming as a
spinor In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infi ...
to the 36-dimensional Lie algebra so(9), in analogy with the construction of E8. In older books and papers, F4 is sometimes denoted by E4.


Algebra


Dynkin diagram

The
Dynkin diagram In the Mathematics, mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of Graph (discrete mathematics), graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the ...
for F4 is: .


Weyl/Coxeter group

Its
Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
/
Coxeter Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century. Coxeter was born in England and educated ...
group is the
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
of the
24-cell In four-dimensional space, four-dimensional geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octa ...
: it is a
solvable group In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminat ...
of order 1152. It has minimal faithful degree , which is realized by the action on the
24-cell In four-dimensional space, four-dimensional geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octa ...
. The group has ID (1152,157478) in the small groups library.


Cartan matrix

:\left \begin 2&-1&0&0\\ -1&2&-2&0\\ 0&-1&2&-1\\ 0&0&-1&2 \end \right/math>


F4 lattice

The F4
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an or ...
is a four-dimensional
body-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the Crystal structure#Unit cell, unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There ...
lattice (i.e. the union of two
hypercubic lattice In geometry, a hypercubic honeycomb is a family of List of regular polytopes#Tessellations, regular honeycombs (tessellations) in -dimensional spaces with the Schläfli symbols and containing the symmetry of Coxeter diagram#Infinite Coxeter grou ...
s, each lying in the center of the other). They form a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
called the
Hurwitz quaternion In mathematics, a Hurwitz quaternion (or Hurwitz integer) is a quaternion whose components are ''either'' all integers ''or'' all half-integers (halves of odd integers; a mixture of integers and half-integers is excluded). The set of all Hurwitz ...
ring. The 24 Hurwitz quaternions of norm 1 form the vertices of a
24-cell In four-dimensional space, four-dimensional geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octa ...
centered at the origin.


Roots of F4

The 48 root vectors of F4 can be found as the vertices of the
24-cell In four-dimensional space, four-dimensional geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octa ...
in two dual configurations, representing the vertices of a
disphenoidal 288-cell In geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the Truncation (geometry), truncation of the regular 24-cell. There are two degrees of truncations, including a bitruncation. Truncated 24-cell ...
if the edge lengths of the 24-cells are equal: 24-cell vertices: * 24 roots by (±1, ±1, 0, 0), permuting coordinate positions Dual 24-cell vertices: * 8 roots by (±1, 0, 0, 0), permuting coordinate positions * 16 roots by (±1/2, ±1/2, ±1/2, ±1/2).


Simple roots

One choice of
simple root In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer ...
s for F4, , is given by the rows of the following matrix: :\begin 0&1&-1&0 \\ 0&0&1&-1 \\ 0&0&0&1 \\ \frac&-\frac&-\frac&-\frac\\ \end The Hasse diagram for the F4 root poset is shown below right.


F4 polynomial invariant

Just as O(''n'') is the group of automorphisms which keep the quadratic polynomials invariant, F4 is the group of automorphisms of the following set of 3 polynomials in 27 variables. (The first can easily be substituted into other two making 26 variables). :C_1 = x+y+z :C_2 = x^2+y^2+z^2+2X\overline+2Y\overline+2Z\overline :C_3 = xyz - xX\overline - yY\overline - zZ\overline + XYZ + \overline Where ''x'', ''y'', ''z'' are real-valued and ''X'', ''Y'', ''Z'' are octonion valued. Another way of writing these invariants is as (combinations of) Tr(''M''), Tr(''M''2) and Tr(''M''3) of the
hermitian {{Short description, none Numerous things are named after the French mathematician Charles Hermite (1822–1901): Hermite * Cubic Hermite spline, a type of third-degree spline * Gauss–Hermite quadrature, an extension of Gaussian quadrature me ...
octonion In mathematics, the octonions are a normed division algebra over the real numbers, a kind of Hypercomplex number, hypercomplex Number#Classification, number system. The octonions are usually represented by the capital letter O, using boldface or ...
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
: : M = \begin x & \overline & Y \\ Z & y & \overline \\ \overline & X & z \end The set of polynomials defines a 24-dimensional compact surface.


Representations

The characters of finite dimensional representations of the real and complex Lie algebras and Lie groups are all given by the
Weyl character formula In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by . There is a closely related formula for the ch ...
. The dimensions of the smallest irreducible representations are : :1, 26, 52, 273, 324, 1053 (twice), 1274, 2652, 4096, 8424, 10829, 12376, 16302, 17901, 19278, 19448, 29172, 34749, 76076, 81081, 100776, 106496, 107406, 119119, 160056 (twice), 184756, 205751, 212992, 226746, 340119, 342056, 379848, 412776, 420147, 627912... The 52-dimensional representation is the
adjoint representation In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if ''G'' is \m ...
, and the 26-dimensional one is the trace-free part of the action of F4 on the exceptional Albert algebra of dimension 27. There are two non-isomorphic irreducible representations of dimensions 1053, 160056, 4313088, etc. The
fundamental representation In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defi ...
s are those with dimensions 52, 1274, 273, 26 (corresponding to the four nodes in the
Dynkin diagram In the Mathematics, mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of Graph (discrete mathematics), graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the ...
in the order such that the double arrow points from the second to the third). Embeddings of the maximal subgroups of F4 up to dimension 273 with associated projection matrix are shown below.


See also

*
24-cell In four-dimensional space, four-dimensional geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octa ...
* Albert algebra *
Cayley plane In mathematics, the Cayley plane (or octonionic projective plane) P2(O) is a projective plane over the octonions.Baez (2002). The Cayley plane was discovered in 1933 by Ruth Moufang, and is named after Arthur Cayley for his 1845 paper describing ...
*
Dynkin diagram In the Mathematics, mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of Graph (discrete mathematics), graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the ...
*
Fundamental representation In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defi ...
*
Simple Lie group In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symm ...


References

* *
John Baez John Carlos Baez ( ; born June 12, 1961) is an American mathematical physicist and a professor of mathematics at the University of California, Riverside (UCR) in Riverside, California. He has worked on spin foams in loop quantum gravity, ap ...
, ''The Octonions'', Section 4.2: F4
Bull. Amer. Math. Soc. 39 (2002), 145-205
Online HTML version at http://math.ucr.edu/home/baez/octonions/node15.html. * * {{String theory topics , state=collapsed Algebraic groups Lie groups Exceptional Lie algebras