HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, expansion is a
polytope In elementary geometry, a polytope is a geometric object with flat sides (''faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an - ...
operation where facets are separated and moved radially apart, and new facets are formed at separated elements ( vertices, edges, etc.). Equivalently this operation can be imagined by keeping facets in the same position but reducing their size. The expansion of a
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
creates a
uniform polytope In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude ver ...
, but the operation can be applied to any
convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the w ...
, as demonstrated for
polyhedra In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on th ...
in
Conway polyhedron notation In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using o ...
(which represents expansion with the letter ). For polyhedra, an expanded polyhedron has all the
faces The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may af ...
of the original polyhedron, all the faces of the
dual polyhedron In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. ...
, and new square faces in place of the original edges.


Expansion of regular polytopes

According to Coxeter, this multidimensional term was defined by
Alicia Boole Stott Alicia Boole Stott (8 June 1860 – 17 December 1940) was an Irish mathematician. Despite never holding an academic position, she made a number of valuable contributions to the field, receiving an honorary doctorate from the University of Gron ...
Coxeter, ''Regular Polytopes'' (1973), p. 123. p.210 for creating new polytopes, specifically starting from
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
s to construct new
uniform polytope In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude ver ...
s. The ''expansion'' operation is symmetric with respect to a regular polytope and its
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ...
. The resulting figure contains the facets of both the regular and its dual, along with various prismatic facets filling the gaps created between intermediate dimensional elements. It has somewhat different meanings by
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordin ...
. In a
Wythoff construction In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction. Construction process ...
, an expansion is generated by reflections from the first and last mirrors. In higher dimensions, lower dimensional expansions can be written with a subscript, so e2 is the same as t0,2 in any dimension. By dimension: * A regular
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two to ...
expands into a regular 2n-gon. ** The operation is identical to
truncation In mathematics and computer science, truncation is limiting the number of digits right of the decimal point. Truncation and floor function Truncation of positive real numbers can be done using the floor function. Given a number x \in \math ...
for polygons, e = e1 = t0,1 = t and has Coxeter-Dynkin diagram . * A regular
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on th ...
(3-polytope) expands into a polyhedron with
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines ...
''p.4.q.4''. **This operation for polyhedra is also called
cantellation In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tilin ...
, e = e2 = t0,2 = rr, and has Coxeter diagram . **: **: For example, a rhombicuboctahedron can be called an ''expanded cube'', ''expanded octahedron'', as well as a ''cantellated cube'' or ''cantellated octahedron''. * A regular
4-polytope In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), an ...
(4-polytope) expands into a new 4-polytope with the original cells, new cells in place of the old vertices, p-gonal prisms in place of the old faces, and r-gonal prisms in place of the old edges. ** This operation for 4-polytopes is also called
runcination In geometry, runcination is an operation that cuts a regular polytope (or honeycomb) simultaneously along the faces, edges, and vertices, creating new facets in place of the original face, edge, and vertex centers. It is a higher order truncati ...
, e = e3 = t0,3, and has Coxeter diagram . * Similarly a regular
5-polytope In geometry, a five-dimensional polytope (or 5-polytope) is a polytope in five-dimensional space, bounded by (4-polytope) facets, pairs of which share a polyhedral cell. Definition A 5-polytope is a closed five-dimensional figure with vertice ...
expands into a new 5-polytope with facets , , ×
prism Prism usually refers to: * Prism (optics), a transparent optical component with flat surfaces that refract light * Prism (geometry), a kind of polyhedron Prism may also refer to: Science and mathematics * Prism (geology), a type of sedimentar ...
s, × prisms, and ''×''
duoprism In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an -polytope and an -polytope is an -polytope, wher ...
s. ** This operation is called
sterication In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude ver ...
, e = e4 = t0,4 = 2r2r and has Coxeter diagram . The general operator for expansion of a regular n-polytope is t0,n-1. New regular facets are added at each vertex, and new prismatic polytopes are added at each divided edge, face, ...
ridge A ridge or a mountain ridge is a geographical feature consisting of a chain of mountains or hills that form a continuous elevated crest for an extended distance. The sides of the ridge slope away from the narrow top on either side. The line ...
, etc.


See also

*
Conway polyhedron notation In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using o ...


Notes


References

* * Coxeter, H. S. M., ''
Regular Polytopes In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, f ...
''. 3rd edition, Dover, (1973) . * Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966 {{Polyhedron_operators Euclidean geometry Polytopes