HOME

TheInfoList



OR:

Euclidean geometry is a mathematical system attributed to ancient
Greek mathematician Greek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly extant from the 7th century BC to the 4th century AD, around the shores of the Eastern Mediterranean. Greek mathe ...
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ge ...
, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s (postulates) and deducing many other
proposition In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, " meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the no ...
s ( theorems) from these. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a
logical system A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A for ...
in which each result is '' proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first
axiomatic system In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contai ...
and the first examples of
mathematical proof A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proo ...
s. It goes on to the solid geometry of
three dimensions Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called '' parameters'') are required to determine the position of an element (i.e., point). This is the inform ...
. Much of the ''Elements'' states results of what are now called
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
and number theory, explained in geometrical language. For more than two thousand years, the adjective "Euclidean" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only over short distances (relative to the strength of the gravitational field). Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms describing basic properties of geometric objects such as points and lines, to propositions about those objects. This is in contrast to
analytic geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineer ...
, introduced almost 2,000 years later by René Descartes, which uses
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
to express geometric properties as
algebraic formula In mathematics, an algebraic expression is an expression built up from integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number). For e ...
s.


The ''Elements''

The ''Elements'' is mainly a systematization of earlier knowledge of geometry. Its improvement over earlier treatments was rapidly recognized, with the result that there was little interest in preserving the earlier ones, and they are now nearly all lost. There are 13 books in the ''Elements'': Books I–IV and VI discuss plane geometry. Many results about plane figures are proved, for example, "In any triangle, two angles taken together in any manner are less than two right angles." (Book I proposition 17) and the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite ...
"In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle." (Book I, proposition 47) Books V and VII–X deal with number theory, with numbers treated geometrically as lengths of line segments or areas of surface regions. Notions such as prime numbers and
rational Rationality is the quality of being guided by or based on reasons. In this regard, a person acts rationally if they have a good reason for what they do or a belief is rational if it is based on strong evidence. This quality can apply to an abili ...
and
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s are introduced. It is proved that there are infinitely many prime numbers. Books XI–XIII concern solid geometry. A typical result is the 1:3 ratio between the volume of a cone and a cylinder with the same height and base. The platonic solids are constructed.


Axioms

Euclidean geometry is an
axiomatic system In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contai ...
, in which all theorems ("true statements") are derived from a small number of simple axioms. Until the advent of non-Euclidean geometry, these axioms were considered to be obviously true in the physical world, so that all the theorems would be equally true. However, Euclid's reasoning from assumptions to conclusions remains valid independent of their physical reality.The assumptions of Euclid are discussed from a modern perspective in Near the beginning of the first book of the ''Elements'', Euclid gives five postulates (axioms) for plane geometry, stated in terms of constructions (as translated by Thomas Heath): :Let the following be postulated: # To draw a straight line from any point to any point. # To produce (extend) a finite straight line continuously in a straight line. # To describe a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is con ...
with any centre and distance (radius). # That all right angles are equal to one another. # parallel_postulate.html" ;"title="he parallel postulate">he parallel postulate That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which the angles are less than two right angles. Although Euclid explicitly only asserts the existence of the constructed objects, in his reasoning he also implicitly assumes them to be unique. The ''Elements'' also include the following five "common notions": # Things that are equal to the same thing are also equal to one another (the transitive property of a Euclidean relation). # If equals are added to equals, then the wholes are equal (Addition property of equality). # If equals are subtracted from equals, then the differences are equal (subtraction property of equality). # Things that coincide with one another are equal to one another (reflexive property). # The whole is greater than the part. Modern scholars agree that Euclid's postulates do not provide the complete logical foundation that Euclid required for his presentation. Modern treatments use more extensive and complete sets of axioms.


Parallel postulate

To the ancients, the parallel postulate seemed less obvious than the others. They aspired to create a system of absolutely certain propositions, and to them, it seemed as if the parallel line postulate required proof from simpler statements. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate is true, and others in which it is false. Euclid himself seems to have considered it as being qualitatively different from the others, as evidenced by the organization of the ''Elements'': his first 28 propositions are those that can be proved without it. Many alternative axioms can be formulated which are logically equivalent to the parallel postulate (in the context of the other axioms). For example, Playfair's axiom states: :In a
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
, through a point not on a given straight line, at most one line can be drawn that never meets the given line. The "at most" clause is all that is needed since it can be proved from the remaining axioms that at least one parallel line exists.


Methods of proof

Euclidean Geometry is ''
constructive Although the general English usage of the adjective constructive is "helping to develop or improve something; helpful to someone, instead of upsetting and negative," as in the phrase "constructive criticism," in legal writing ''constructive'' has ...
''. Postulates 1, 2, 3, and 5 assert the existence and uniqueness of certain geometric figures, and these assertions are of a constructive nature: that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straightedge. In this sense, Euclidean geometry is more concrete than many modern axiomatic systems such as set theory, which often assert the existence of objects without saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory.Within Euclid's assumptions, it is quite easy to give a formula for area of triangles and squares. However, in a more general context like set theory, it is not as easy to prove that the area of a square is the sum of areas of its pieces, for example. See Lebesgue measure and
Banach–Tarski paradox The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be p ...
.
Strictly speaking, the lines on paper are ''
models A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
'' of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width, but any real drawn line will. Though nearly all modern mathematicians consider nonconstructive methods just as sound as constructive ones, Euclid's constructive proofs often supplanted fallacious nonconstructive ones—e.g., some of the Pythagoreans' proofs that involved irrational numbers, which usually required a statement such as "Find the greatest common measure of ..." Euclid often used
proof by contradiction In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known a ...
. Euclidean geometry also allows the method of superposition, in which a figure is transferred to another point in space. For example, proposition I.4, side-angle-side congruence of triangles, is proved by moving one of the two triangles so that one of its sides coincides with the other triangle's equal side, and then proving that the other sides coincide as well. Some modern treatments add a sixth postulate, the rigidity of the triangle, which can be used as an alternative to superposition.


Notation and terminology


Naming of points and figures

Points are customarily named using capital letters of the alphabet. Other figures, such as lines, triangles, or circles, are named by listing a sufficient number of points to pick them out unambiguously from the relevant figure, e.g., triangle ABC would typically be a triangle with vertices at points A, B, and C.


Complementary and supplementary angles

Angles whose sum is a right angle are called
complementary A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class ...
. Complementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the right angle. The number of rays in between the two original rays is infinite. Angles whose sum is a straight angle are supplementary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite.


Modern versions of Euclid's notation

In modern terminology, angles would normally be measured in degrees or radians. Modern school textbooks often define separate figures called
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Art ...
s (infinite), rays (semi-infinite), and line segments (of finite length). Euclid, rather than discussing a ray as an object that extends to infinity in one direction, would normally use locutions such as "if the line is extended to a sufficient length", although he occasionally referred to "infinite lines". A "line" in Euclid could be either straight or curved, and he used the more specific term "straight line" when necessary.


Some important or well known results

File:pons_asinorum_dzmanto.png, The '' pons asinorum'' or ''bridge of asses theorem'' states that in an isosceles triangle, α = β and γ = δ. File:Sum_of_angles_of_triangle_dzmanto.png, The ''triangle angle sum theorem'' states that the sum of the three angles of any triangle, in this case angles α, β, and γ, will always equal 180 degrees. File:Pythagorean.svg, The ''
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite ...
'' states that the sum of the areas of the two squares on the legs (''a'' and ''b'') of a right triangle equals the area of the square on the hypotenuse (''c''). File:Thales' Theorem Simple.svg, '' Thales' theorem'' states that if AC is a diameter, then the angle at B is a right angle.


Pons asinorum

The pons asinorum (''bridge of asses'') states that ''in isosceles triangles the angles at the base equal one another, and, if the equal straight lines are produced further, then the angles under the base equal one another''. Its name may be attributed to its frequent role as the first real test in the ''Elements'' of the intelligence of the reader and as a bridge to the harder propositions that followed. It might also be so named because of the geometrical figure's resemblance to a steep bridge that only a sure-footed donkey could cross.


Congruence of triangles

Triangles are congruent if they have all three sides equal (SSS), two sides and the angle between them equal (SAS), or two angles and a side equal (ASA) (Book I, propositions 4, 8, and 26). Triangles with three equal angles (AAA) are similar, but not necessarily congruent. Also, triangles with two equal sides and an adjacent angle are not necessarily equal or congruent.


Triangle angle sum

The sum of the angles of a triangle is equal to a straight angle (180 degrees). This causes an equilateral triangle to have three interior angles of 60 degrees. Also, it causes every triangle to have at least two acute angles and up to one obtuse or right angle.


Pythagorean theorem

The celebrated
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite ...
(book I, proposition 47) states that in any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).


Thales' theorem

Thales' theorem, named after Thales of Miletus states that if A, B, and C are points on a circle where the line AC is a diameter of the circle, then the angle ABC is a right angle. Cantor supposed that Thales proved his theorem by means of Euclid Book I, Prop. 32 after the manner of Euclid Book III, Prop. 31.


Scaling of area and volume

In modern terminology, the area of a plane figure is proportional to the square of any of its linear dimensions, A \propto L^2, and the volume of a solid to the cube, V \propto L^3. Euclid proved these results in various special cases such as the area of a circle and the volume of a parallelepipedal solid. Euclid determined some, but not all, of the relevant constants of proportionality. E.g., it was his successor
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists i ...
who proved that a sphere has 2/3 the volume of the circumscribing cylinder.


System of measurement and arithmetic

Euclidean geometry has two fundamental types of measurements:
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
and
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
. The angle scale is absolute, and Euclid uses the right angle as his basic unit, so that, for example, a 45- degree angle would be referred to as half of a right angle. The distance scale is relative; one arbitrarily picks a line segment with a certain nonzero length as the unit, and other distances are expressed in relation to it. Addition of distances is represented by a construction in which one line segment is copied onto the end of another line segment to extend its length, and similarly for subtraction. Measurements of
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open s ...
and volume are derived from distances. For example, a rectangle with a width of 3 and a length of 4 has an area that represents the product, 12. Because this geometrical interpretation of multiplication was limited to three dimensions, there was no direct way of interpreting the product of four or more numbers, and Euclid avoided such products, although they are implied, for example in the proof of book IX, proposition 20. Euclid refers to a pair of lines, or a pair of planar or solid figures, as "equal" (ἴσος) if their lengths, areas, or volumes are equal respectively, and similarly for angles. The stronger term " congruent" refers to the idea that an entire figure is the same size and shape as another figure. Alternatively, two figures are congruent if one can be moved on top of the other so that it matches up with it exactly. (Flipping it over is allowed.) Thus, for example, a 2x6 rectangle and a 3x4 rectangle are equal but not congruent, and the letter R is congruent to its mirror image. Figures that would be congruent except for their differing sizes are referred to as similar.
Corresponding angles In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points. Transversals play a role in establishing whether two or more other lines in the Euclidean plane are parallel. The intersections of a t ...
in a pair of similar shapes are congruent and
corresponding sides In geometry, the tests for congruence and similarity involve comparing corresponding sides and corresponding angles of polygons. In these tests, each side and each angle in one polygon is paired with a side or angle in the second polygon, takin ...
are in proportion to each other.


Applications

Because of Euclidean geometry's fundamental status in mathematics, it is impractical to give more than a representative sampling of applications here. File:us land survey officer.jpg, A surveyor uses a
level Level or levels may refer to: Engineering *Level (instrument), a device used to measure true horizontal or relative heights *Spirit level, an instrument designed to indicate whether a surface is horizontal or vertical *Canal pound or level *Regr ...
File:Ambersweet oranges.jpg, Sphere packing applies to a stack of
orange Orange most often refers to: *Orange (fruit), the fruit of the tree species '' Citrus'' × ''sinensis'' ** Orange blossom, its fragrant flower *Orange (colour), from the color of an orange, occurs between red and yellow in the visible spectrum * ...
s. File:Parabola with focus and arbitrary line.svg, A parabolic mirror brings parallel rays of light to a focus.
As suggested by the etymology of the word, one of the earliest reasons for interest in and also one of the most common current use of geometry is surveying, and certain practical results from Euclidean geometry, such as the right-angle property of the 3-4-5 triangle, were used long before they were proved formally. The fundamental types of measurements in Euclidean geometry are distances and angles, both of which can be measured directly by a surveyor. Historically, distances were often measured by chains, such as
Gunter's chain Gunter's chain (also known as Gunter’s measurement) is a distance measuring device used for surveying. It was designed and introduced in 1620 by English clergyman and mathematician Edmund Gunter (1581–1626). It enabled plots of land to be ac ...
, and angles using graduated circles and, later, the
theodolite A theodolite () is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes. The traditional use has been for land surveying, but it is also used extensively for building and ...
. An application of Euclidean solid geometry is the determination of packing arrangements, such as the problem of finding the most efficient packing of spheres in n dimensions. This problem has applications in
error detection and correction In information theory and coding theory with applications in computer science and telecommunication, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communi ...
. Geometric optics uses Euclidean geometry to analyze the focusing of light by lenses and mirrors. File:Damascus Khan asad Pacha cropped.jpg, Geometry is used in art and architecture. File:Water tower cropped.jpg, The water tower consists of a cone, a cylinder, and a hemisphere. Its volume can be calculated using solid geometry. File:Origami crane cropped.jpg, Geometry can be used to design origami. Geometry is used extensively in
architecture Architecture is the art and technique of designing and building, as distinguished from the skills associated with construction. It is both the process and the product of sketching, conceiving, planning, designing, and constructing buildings ...
. Geometry can be used to design origami. Some classical construction problems of geometry are impossible using
compass and straightedge In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
, but can be solved using origami. Much of CAD (computer-aided design) and CAM (computer-aided manufacturing) is based on Euclidean geometry. Design geometry typically consists of shapes bounded by planes, cylinders, cones, tori, and other similar shapes. In the present day, CAD/CAM is essential in the design of almost everything, including cars, airplanes, ships, and smartphones. A few decades ago, sophisticated draftsmen would learn fairly advanced Euclidean geometry, including things like Pascal's theorem and
Brianchon's theorem In geometry, Brianchon's theorem is a theorem stating that when a hexagon is circumscribed around a conic section, its principal diagonals (those connecting opposite vertices) meet in a single point. It is named after Charles Julien Brianchon ...
, but in modern times this is no longer necessary. File:Motor partsolutions.gif


Later work


Archimedes and Apollonius

Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists i ...
(c. 287 BCE – c. 212 BCE), a colorful figure about whom many historical anecdotes are recorded, is remembered along with Euclid as one of the greatest of ancient mathematicians. Although the foundations of his work were put in place by Euclid, his work, unlike Euclid's, is believed to have been entirely original. He proved equations for the volumes and areas of various figures in two and three dimensions, and enunciated the
Archimedean property In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typical ...
of finite numbers.
Apollonius of Perga Apollonius of Perga ( grc-gre, Ἀπολλώνιος ὁ Περγαῖος, Apollṓnios ho Pergaîos; la, Apollonius Pergaeus; ) was an Ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the contribution ...
(c. 262 BCE – c. 190 BCE) is mainly known for his investigation of conic sections.


17th century: Descartes

René Descartes (1596–1650) developed
analytic geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineer ...
, an alternative method for formalizing geometry which focused on turning geometry into algebra. In this approach, a point on a plane is represented by its Cartesian (''x'', ''y'') coordinates, a line is represented by its equation, and so on. In Euclid's original approach, the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite ...
follows from Euclid's axioms. In the Cartesian approach, the axioms are the axioms of algebra, and the equation expressing the Pythagorean theorem is then a definition of one of the terms in Euclid's axioms, which are now considered theorems. The equation :, PQ, =\sqrt \, defining the distance between two points ''P'' = (''px'', ''py'') and ''Q'' = (''qx'', ''qy'') is then known as the ''Euclidean metric'', and other metrics define non-Euclidean geometries. In terms of analytic geometry, the restriction of classical geometry to compass and straightedge constructions means a restriction to first- and second-order equations, e.g., ''y'' = 2''x'' + 1 (a line), or ''x''2 + ''y''2 = 7 (a circle). Also in the 17th century, Girard Desargues, motivated by the theory of perspective, introduced the concept of idealized points, lines, and planes at infinity. The result can be considered as a type of generalized geometry, projective geometry, but it can also be used to produce proofs in ordinary Euclidean geometry in which the number of special cases is reduced.


18th century

Geometers of the 18th century struggled to define the boundaries of the Euclidean system. Many tried in vain to prove the fifth postulate from the first four. By 1763, at least 28 different proofs had been published, but all were found incorrect. Leading up to this period, geometers also tried to determine what constructions could be accomplished in Euclidean geometry. For example, the problem of trisecting an angle with a compass and straightedge is one that naturally occurs within the theory, since the axioms refer to constructive operations that can be carried out with those tools. However, centuries of efforts failed to find a solution to this problem, until Pierre Wantzel published a proof in 1837 that such a construction was impossible. Other constructions that were proved impossible include doubling the cube and squaring the circle. In the case of doubling the cube, the impossibility of the construction originates from the fact that the compass and straightedge method involve equations whose order is an integral power of two, while doubling a cube requires the solution of a third-order equation. Euler discussed a generalization of Euclidean geometry called
affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of ''parallel lines'' is one of the main properties that is ind ...
, which retains the fifth postulate unmodified while weakening postulates three and four in a way that eliminates the notions of angle (whence right triangles become meaningless) and of equality of length of line segments in general (whence circles become meaningless) while retaining the notions of parallelism as an equivalence relation between lines, and equality of length of parallel line segments (so line segments continue to have a midpoint).


19th century

In the early 19th century, Carnot and Möbius systematically developed the use of signed angles and line segments as a way of simplifying and unifying results.


Higher dimensions

In the 1840s William Rowan Hamilton developed the quaternions, and
John T. Graves John Thomas Graves (4 December 1806 – 29 March 1870) was an Irish jurist and mathematician. He was a friend of William Rowan Hamilton, and is credited both with inspiring Hamilton to discover the quaternions in October 1843 and then discover ...
and
Arthur Cayley Arthur Cayley (; 16 August 1821 – 26 January 1895) was a prolific British mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics. As a child, Cayley enjoyed solving complex maths problems ...
the
octonion In mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface or blackboard bold \mathbb O. Octonions have ...
s. These are normed algebras which extend the
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
. Later it was understood that the quaternions are also a Euclidean geometric system with four real Cartesian coordinates. Cayley used quaternions to study rotations in 4-dimensional Euclidean space. At mid-century Ludwig Schläfli developed the general concept of Euclidean space, extending Euclidean geometry to
higher dimensions In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordi ...
. He defined ''polyschemes'', later called polytopes, which are the higher-dimensional analogues of polygons and polyhedra. He developed their theory and discovered all the regular polytopes, i.e. the n-dimensional analogues of regular polygons and Platonic solids. He found there are six regular convex polytopes in dimension four, and three in all higher dimensions. Schläfli performed this work in relative obscurity and it was published in full only posthumously in 1901. It had little influence until it was rediscovered and fully documented in 1948 by H.S.M. Coxeter. In 1878
William Kingdon Clifford William Kingdon Clifford (4 May 18453 March 1879) was an English mathematician and philosopher. Building on the work of Hermann Grassmann, he introduced what is now termed geometric algebra, a special case of the Clifford algebra named in hi ...
introduced what is now termed geometric algebra, unifying Hamilton's quaternions with Hermann Grassmann's algebra and revealing the geometric nature of these systems, especially in four dimensions. The operations of geometric algebra have the effect of mirroring, rotating, translating, and mapping the geometric objects that are being modeled to new positions. The
Clifford torus In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the cartesian product of two circles ''S'' and ''S'' (in the same sense that the surface of a cylinder is "flat"). It is named after William Kingdon ...
on the surface of the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensi ...
is the simplest and most symmetric flat embedding of the Cartesian product of two circles (in the same sense that the surface of a cylinder is "flat").


Non-Euclidean geometry

The century's most influential development in geometry occurred when, around 1830,
János Bolyai János Bolyai (; 15 December 1802 – 27 January 1860) or Johann Bolyai, was a Hungarian mathematician, who developed absolute geometry—a geometry that includes both Euclidean geometry and hyperbolic geometry. The discovery of a consis ...
and
Nikolai Ivanovich Lobachevsky Nikolai Ivanovich Lobachevsky ( rus, Никола́й Ива́нович Лобаче́вский, p=nʲikɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕɛfskʲɪj, a=Ru-Nikolai_Ivanovich_Lobachevsky.ogg; – ) was a Russian mathematician and geometer, kn ...
separately published work on non-Euclidean geometry, in which the parallel postulate is not valid. Since non-Euclidean geometry is provably relatively consistent with Euclidean geometry, the parallel postulate cannot be proved from the other postulates. In the 19th century, it was also realized that Euclid's ten axioms and common notions do not suffice to prove all of the theorems stated in the ''Elements''. For example, Euclid assumed implicitly that any line contains at least two points, but this assumption cannot be proved from the other axioms, and therefore must be an axiom itself. The very first geometric proof in the ''Elements,'' shown in the figure above, is that any line segment is part of a triangle; Euclid constructs this in the usual way, by drawing circles around both endpoints and taking their intersection as the third
vertex Vertex, vertices or vertexes may refer to: Science and technology Mathematics and computer science *Vertex (geometry), a point where two or more curves, lines, or edges meet *Vertex (computer graphics), a data structure that describes the position ...
. His axioms, however, do not guarantee that the circles actually intersect, because they do not assert the geometrical property of continuity, which in Cartesian terms is equivalent to the completeness property of the real numbers. Starting with Moritz Pasch in 1882, many improved axiomatic systems for geometry have been proposed, the best known being those of Hilbert, George Birkhoff, and Tarski.Tarski (1951).


20th century and relativity

Einstein's theory of special relativity involves a four-dimensional space-time, the Minkowski space, which is non-Euclidean. This shows that non-Euclidean geometries, which had been introduced a few years earlier for showing that the parallel postulate cannot be proved, are also useful for describing the physical world. However, the three-dimensional "space part" of the Minkowski space remains the space of Euclidean geometry. This is not the case with general relativity, for which the geometry of the space part of space-time is not Euclidean geometry. For example, if a triangle is constructed out of three rays of light, then in general the interior angles do not add up to 180 degrees due to gravity. A relatively weak gravitational field, such as the Earth's or the Sun's, is represented by a metric that is approximately, but not exactly, Euclidean. Until the 20th century, there was no technology capable of detecting these deviations in rays of light from Euclidean geometry, but Einstein predicted that such deviations would exist. They were later verified by observations such as the slight bending of starlight by the Sun during a solar eclipse in 1919, and such considerations are now an integral part of the software that runs the
GPS The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite sy ...
system.


As a description of the structure of space

Euclid believed that his
axioms An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
were self-evident statements about physical reality. Euclid's proofs depend upon assumptions perhaps not obvious in Euclid's fundamental axioms, in particular that certain movements of figures do not change their geometrical properties such as the lengths of sides and interior angles, the so-called ''Euclidean motions'', which include translations, reflections and rotations of figures. See, for example: and The ''group of motions'' underlie the metric notions of geometry. See Taken as a physical description of space, postulate 2 (extending a line) asserts that space does not have holes or boundaries; postulate 4 (equality of right angles) says that space is
isotropic Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
and figures may be moved to any location while maintaining congruence; and postulate 5 (the parallel postulate) that space is flat (has no intrinsic curvature). As discussed above,
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
's theory of relativity significantly modifies this view. The ambiguous character of the axioms as originally formulated by Euclid makes it possible for different commentators to disagree about some of their other implications for the structure of space, such as whether or not it is infiniteHeath, p. 200. (see below) and what its topology is. Modern, more rigorous reformulations of the system typically aim for a cleaner separation of these issues. Interpreting Euclid's axioms in the spirit of this more modern approach, axioms 1–4 are consistent with either infinite or finite space (as in elliptic geometry), and all five axioms are consistent with a variety of topologies (e.g., a plane, a cylinder, or a torus for two-dimensional Euclidean geometry).


Treatment of infinity


Infinite objects

Euclid sometimes distinguished explicitly between "finite lines" (e.g., Postulate 2) and " infinite lines" (book I, proposition 12). However, he typically did not make such distinctions unless they were necessary. The postulates do not explicitly refer to infinite lines, although for example some commentators interpret postulate 3, existence of a circle with any radius, as implying that space is infinite. The notion of infinitesimal quantities had previously been discussed extensively by the Eleatic School, but nobody had been able to put them on a firm logical basis, with paradoxes such as
Zeno's paradox Zeno's paradoxes are a set of philosophical problems generally thought to have been devised by Greek philosopher Zeno of Elea (c. 490–430 BC) to support Parmenides' doctrine that contrary to the evidence of one's senses, the belief in plur ...
occurring that had not been resolved to universal satisfaction. Euclid used the
method of exhaustion The method of exhaustion (; ) is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the difference in area ...
rather than infinitesimals. Later ancient commentators, such as Proclus (410–485 CE), treated many questions about infinity as issues demanding proof and, e.g., Proclus claimed to prove the infinite divisibility of a line, based on a proof by contradiction in which he considered the cases of even and odd numbers of points constituting it. At the turn of the 20th century, Otto Stolz, Paul du Bois-Reymond, Giuseppe Veronese, and others produced controversial work on non-Archimedean models of Euclidean geometry, in which the distance between two points may be infinite or infinitesimal, in the Newton
Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mathema ...
sense. Fifty years later,
Abraham Robinson Abraham Robinson (born Robinsohn; October 6, 1918 – April 11, 1974) was a mathematician who is most widely known for development of nonstandard analysis, a mathematically rigorous system whereby infinitesimal and infinite numbers were reincorpo ...
provided a rigorous logical foundation for Veronese's work.


Infinite processes

One reason that the ancients treated the parallel postulate as less certain than the others is that verifying it physically would require us to inspect two lines to check that they never intersected, even at some very distant point, and this inspection could potentially take an infinite amount of time. The modern formulation of proof by induction was not developed until the 17th century, but some later commentators consider it implicit in some of Euclid's proofs, e.g., the proof of the infinitude of primes. Supposed paradoxes involving infinite series, such as
Zeno's paradox Zeno's paradoxes are a set of philosophical problems generally thought to have been devised by Greek philosopher Zeno of Elea (c. 490–430 BC) to support Parmenides' doctrine that contrary to the evidence of one's senses, the belief in plur ...
, predated Euclid. Euclid avoided such discussions, giving, for example, the expression for the partial sums of the
geometric series In mathematics, a geometric series is the sum of an infinite number of terms that have a constant ratio between successive terms. For example, the series :\frac \,+\, \frac \,+\, \frac \,+\, \frac \,+\, \cdots is geometric, because each su ...
in IX.35 without commenting on the possibility of letting the number of terms become infinite.


Logical basis


Classical logic

Euclid frequently used the method of
proof by contradiction In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known a ...
, and therefore the traditional presentation of Euclidean geometry assumes
classical logic Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this class ...
, in which every proposition is either true or false, i.e., for any proposition P, the proposition "P or not P" is automatically true.


Modern standards of rigor

Placing Euclidean geometry on a solid axiomatic basis was a preoccupation of mathematicians for centuries.A detailed discussion can be found in The role of primitive notions, or undefined concepts, was clearly put forward by
Alessandro Padoa Alessandro Padoa (14 October 1868 – 25 November 1937) was an Italian mathematician and logician, a contributor to the school of Giuseppe Peano. He is remembered for a method for deciding whether, given some formal theory, a new primitive noti ...
of the Peano delegation at the 1900 Paris conference: That is, mathematics is context-independent knowledge within a hierarchical framework. As said by
Bertrand Russell Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British mathematician, philosopher, logician, and public intellectual. He had a considerable influence on mathematics, logic, set theory, linguistics, ar ...
: Such foundational approaches range between foundationalism and
formalism Formalism may refer to: * Form (disambiguation) * Formal (disambiguation) * Legal formalism, legal positivist view that the substantive justice of a law is a question for the legislature rather than the judiciary * Formalism (linguistics) * Scien ...
.


Axiomatic formulations

*Euclid's axioms: In his dissertation to Trinity College, Cambridge, Bertrand Russell summarized the changing role of Euclid's geometry in the minds of philosophers up to that time. It was a conflict between certain knowledge, independent of experiment, and empiricism, requiring experimental input. This issue became clear as it was discovered that the parallel postulate was not necessarily valid and its applicability was an empirical matter, deciding whether the applicable geometry was Euclidean or non-Euclidean. * Hilbert's axioms: Hilbert's axioms had the goal of identifying a ''simple'' and ''complete'' set of ''independent'' axioms from which the most important geometric theorems could be deduced. The outstanding objectives were to make Euclidean geometry rigorous (avoiding hidden assumptions) and to make clear the ramifications of the parallel postulate. *
Birkhoff's axioms In 1932, G. D. Birkhoff created a set of four postulates of Euclidean geometry in the plane, sometimes referred to as Birkhoff's axioms. These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protrac ...
: Birkhoff proposed four postulates for Euclidean geometry that can be confirmed experimentally with scale and protractor. This system relies heavily on the properties of the
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
. The notions of ''angle'' and ''distance'' become primitive concepts. * Tarski's axioms:
Alfred Tarski Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician a ...
(1902–1983) and his students defined ''elementary'' Euclidean geometry as the geometry that can be expressed in
first-order logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantifi ...
and does not depend on set theory for its logical basis, in contrast to Hilbert's axioms, which involve point sets. Tarski proved that his axiomatic formulation of elementary Euclidean geometry is consistent and complete in a certain sense: there is an algorithm that, for every proposition, can be shown either true or false. (This doesn't violate Gödel's theorem, because Euclidean geometry cannot describe a sufficient amount of
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th c ...
for the theorem to apply.Franzén, Torkel (2005). Gödel's Theorem: An Incomplete Guide to its Use and Abuse. AK Peters. . Pp. 25–26.) This is equivalent to the decidability of real closed fields, of which elementary Euclidean geometry is a model.


See also

*
Absolute geometry Absolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates, but since these are not suf ...
*
Analytic geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineer ...
*
Birkhoff's axioms In 1932, G. D. Birkhoff created a set of four postulates of Euclidean geometry in the plane, sometimes referred to as Birkhoff's axioms. These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protrac ...
*
Cartesian coordinate system A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured i ...
* Hilbert's axioms *
Incidence geometry In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An ''inciden ...
*
List of interactive geometry software Interactive geometry software (IGS) or dynamic geometry environments (DGEs) are computer programs which allow one to create and then manipulate geometric constructions, primarily in plane geometry. In most IGS, one starts construction by putting a ...
*
Metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general set ...
* Non-Euclidean geometry *
Ordered geometry Ordered geometry is a form of geometry featuring the concept of intermediacy (or "betweenness") but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affin ...
* Parallel postulate * Type theory


Classical theorems

*
Angle bisector theorem In geometry, the angle bisector theorem is concerned with the relative lengths of the two segments that a triangle's side is divided into by a line that bisects the opposite angle. It equates their relative lengths to the relative lengths of ...
*
Butterfly theorem The butterfly theorem is a classical result in Euclidean geometry, which can be stated as follows:Johnson, Roger A., ''Advanced Euclidean Geometry'', Dover Publ., 2007 (orig. 1929). Let be the midpoint of a chord of a circle, through which ...
*
Ceva's theorem In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle , let the lines be drawn from the vertices to a common point (not on one of the sides of ), to meet opposite sides at respectively. (The segments are ...
* Heron's formula * Menelaus' theorem * Nine-point circle *
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite ...


Notes


References

* * * * In 3 vols.: vol. 1 , vol. 2 , vol. 3 . Heath's authoritative translation of Euclid's Elements, plus his extensive historical research and detailed commentary throughout the text. * * * * *


External links

* *
Kiran Kedlaya, ''Geometry Unbound''
(a treatment using analytic geometry; PDF format, GFDL licensed) {{DEFAULTSORT:Euclidean Geometry * Greek inventions