Environmental stress fracture
   HOME

TheInfoList



OR:

In
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
, environmental stress fracture or environment assisted fracture is the generic name given to premature
failure Failure is the social concept of not meeting a desirable or intended objective, and is usually viewed as the opposite of success. The criteria for failure depends on context, and may be relative to a particular observer or belief system. On ...
under the influence of
tensile stress In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to ''tensile'' stress and may undergo elongati ...
es and harmful environments of materials such as
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
s and
alloy An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
s, composites,
plastic Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
s and
ceramic A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
s. Metals and alloys exhibit phenomena such as
stress corrosion cracking Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. SC ...
,
hydrogen embrittlement Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can Permeation, permeate solid metals. O ...
, liquid metal embrittlement and corrosion fatigue all coming under this category. Environments such as moist air, sea water and corrosive liquids and gases cause environmental stress fracture.
Metal matrix composites In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic (such as alumina or silicon carb ...
are also susceptible to many of these processes. Plastics and plastic-based composites may suffer swelling, debonding and loss of strength when exposed to organic fluids and other corrosive environments, such as acids and alkalies. Under the influence of stress and environment, many structural materials, particularly the high-specific strength ones become brittle and lose their resistance to fracture. While their
fracture toughness In materials science, fracture toughness is the critical stress intensity factor of a sharp Fracture, crack where propagation of the crack suddenly becomes rapid and unlimited. It is a material property that quantifies its ability to resist crac ...
remains unaltered, their threshold stress intensity factor for crack propagation may be considerably lowered. Consequently, they become prone to premature fracture because of sub-critical crack growth. This article aims to give a brief overview of the various degradation processes mentioned above.


Stress corrosion cracking

Stress corrosion cracking Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. SC ...
is a phenomenon where a
synergistic Synergy is an interaction or cooperation giving rise to a whole that is greater than the simple sum of its parts (i.e., a non-linear addition of force, energy, or effect). The term ''synergy'' comes from the Attic Greek word συνεργία ' f ...
action of
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
and
tensile stress In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to ''tensile'' stress and may undergo elongati ...
leads to
brittle A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. ...
fracture Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress (mechanics), stress. The fracture of a solid usually occurs due to the development of certain displacemen ...
of normally
ductile Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversi ...
materials at generally lower stress levels. During stress corrosion cracking, the material is relatively unattacked by the
corrosive Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
agent (no general corrosion, only localized corrosion), but fine cracks form within it. This process has serious implications on the utilisation of the material because the applicable safe stress levels are drastically reduced in the corrosive medium.
Season cracking Season cracking is a form of stress-corrosion cracking of brass cartridge cases originally reported from British forces in India. During the monsoon season, military activity was temporarily reduced, and ammunition was stored in stables until th ...
and caustic embrittlement are two stress corrosion cracking processes which affected the serviceability of
brass Brass is an alloy of copper and zinc, in proportions which can be varied to achieve different colours and mechanical, electrical, acoustic and chemical properties, but copper typically has the larger proportion, generally copper and zinc. I ...
cartridge cases and riveted steel
boiler A boiler is a closed vessel in which fluid (generally water) is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, centra ...
s respectively.


Hydrogen embrittlement

Small quantities of
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
present inside certain metallic materials make the latter brittle and susceptible to sub-critical crack growth under stress.
Hydrogen embrittlement Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can Permeation, permeate solid metals. O ...
may occur as a side effect of
electroplating Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the redox, reduction of cations of that metal by means of a direct current, direct electric cur ...
processes. ''Delayed failure'' is the fracture of a component under stress after an elapsed time, is a characteristic feature of hydrogen embrittlement (2). Hydrogen entry into the material may be effected during plating,
pickling Pickling is the process of food preservation, preserving or extending the shelf life of food by either Anaerobic organism, anaerobic fermentation (food), fermentation in brine or immersion in vinegar. The pickling procedure typically affects t ...
, phosphating,
melting Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
,
casting Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a casting, which is ejected or ...
or
welding Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melting, melt the parts together and allow them to cool, causing Fusion welding, fusion. Co ...
. Corrosion during service in moist environments generates hydrogen, part of which may enter the metal as
atomic hydrogen A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
(H) and cause embrittlement. Presence of a
tensile stress In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to ''tensile'' stress and may undergo elongati ...
, either inherent or externally applied, is necessary for metals to be damaged. As in the case of stress corrosion cracking, hydrogen embrittlement may also lead to a decrease in the threshold stress intensity factor for crack propagation or an increase in the sub-critical crack growth velocity of the material. The most visible effect of hydrogen in materials is a drastic reduction in
ductility Ductility refers to the ability of a material to sustain significant plastic Deformation (engineering), deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic def ...
during tensile tests. It may increase, decrease or leave unaffected the
yield strength In materials science and engineering, the yield point is the point on a stress–strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and w ...
of the material. Hydrogen may also cause serrated yielding in certain metals such as
niobium Niobium is a chemical element; it has chemical symbol, symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and Ductility, ductile transition metal. Pure niobium has a Mohs scale of mineral hardness, Mohs h ...
,
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
and some
steel Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to steel's high Young's modulus, elastic modulus, Yield (engineering), yield strength, Fracture, fracture strength a ...
s (3).


Case studies

One of the worst disasters caused by stress corrosion cracking was the fall of the
Silver Bridge The Silver Bridge was an eyebar-chain suspension bridge built in 1928 which carried U.S. Route 35 over the Ohio River, connecting Point Pleasant, West Virginia, and Gallipolis, Ohio. Officially named the Point Pleasant Bridge, it was popul ...
, WV in 1967, when a single brittle crack formed by rusting grew to criticality. The crack was on one of the tie bar links of one of the suspension chains, and the whole joint failed quickly by overload. The event escalated and the whole bridge disappeared in less than a minute, killing 46 drivers or passengers on the bridge at the time.


See also

* * * * * * *


References

# Mars G. Fontana, ''Corrosion Engineering'', 3rd Edition, McGraw-Hill, Singapore, 1987 # A. R. Troiano, Trans. American Society for Metals, 52 (1960), 54 # T. K. G. Namboodhiri, Trans. Indian Institute of Metals, 37 (1984), 764 # A. S. Tetelman, ''Fundamental Aspects of Stress Corrosion Cracking'', eds., R. W. Staehle, A. J. Forty and D. Van Rooyan, National Association of Corrosion Engineers, Houston, Texas, (1967), 446 # N. J. Petch and P. Stables, Nature, 169 (1952), 842 # R.A. Oriani, Berichte der Bunsen-Gesellschaft für physikalische Chemie, 76 (1972), 705 # C. D. Beachem, Metall. Trans., 3 (1972), 437 # D. G. Westlake, Trans. ASM, 62 (1969), 1000 {{Refend Corrosion Fracture mechanics