HOME

TheInfoList



OR:

The Enriched Xenon Observatory (EXO) is a particle physics experiment searching for neutrinoless
double beta decay In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move clos ...
of
xenon Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the f ...
-136 at WIPP near Carlsbad, New Mexico, U.S. Neutrinoless
double beta decay In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move clos ...
(0νββ) detection would prove the Majorana nature of neutrinos and impact the
neutrino mass A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass i ...
values and ordering. These are important open topics in
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
. EXO currently has a 200-kilogram xenon liquid
time projection chamber In physics, a time projection chamber (TPC) is a type of particle detector that uses a combination of electric fields and magnetic fields together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particle ...
(EXO-200) with R&D efforts on a ton-scale experiment (nEXO).
Xenon Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the f ...
double beta decay was detected and limits have been set for 0νββ.


Overview

EXO measures the rate of neutrinoless decay events above the expected background of similar signals, to find or limit the double beta decay half-life, which relates to the effective neutrino mass using nuclear matrix elements. A limit on effective neutrino mass below 0.01 eV would determine the neutrino mass order. The effective neutrino mass is dependent on the lightest neutrino mass in such a way that that bound indicates the normal mass hierarchy. The expected rate of 0νββ events is very low, so background radiation is a significant problem. WIPP has of rock overburden—equivalent to of water—to screen incoming cosmic rays. Lead shielding and a cryostat also protect the setup. The neutrinoless decays would appear as narrow spike in the energy spectrum around the xenon Q-value (Qββ = 2457.8 keV), which is fairly high and above most gamma decays.


EXO-200


History

EXO-200 was designed with a goal of less than 40 events per year within two standard deviations of expected decay energy. This background was achieved by selecting and screening all materials for radiopurity. Originally the vessel was to be made of Teflon, but the final design of the vessel uses thin, ultra-pure copper. EXO-200 was relocated from Stanford to WIPP in the summer of 2007. Assembly and commissioning continued until the end of 2009 with data taking beginning in May 2011. Calibration was done using 228Th, 137Cs, and 60Co gamma sources.


Design

The prototype EXO-200 uses a copper cylindrical
time projection chamber In physics, a time projection chamber (TPC) is a type of particle detector that uses a combination of electric fields and magnetic fields together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particle ...
filled with of pure liquid xenon. Xenon is a
scintillator A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate (i.e. re-emit the absorbe ...
, so decay particles produce prompt light which is detected by
avalanche photodiode An avalanche photodiode (APD) is a highly sensitive semiconductor photodiode detector that exploits the photoelectric effect to convert light into electricity. From a functional standpoint, they can be regarded as the semiconductor analog of photo ...
s, providing the event time. A large electric field drives ionization electrons to wires for collection. The time between the light and first collection determines the z coordinate of the event, while a grid of wires determines the radial and angular coordinates. Image:EXO cryostat.jpg, The EXO-200 cryostat installed underground at WIPP. Image:EXO underground laboratory.JPG, The EXO-200 cleanrooms installed underground at WIPP.


Results

The background from earth radioactivity(Th/U) and 137Xe contamination led to ≈2×10−3 counts/(keV·kg·yr) in the detector. Energy resolution near Qββ of 1.53% was achieved. In August 2011, EXO-200 was the first experiment to observe double beta decay of 136Xe, with a
half life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of 2.11×1021 years. This is the slowest directly observed process. An improved half life of 2.165 ±0.016(stat) ±0.059(sys) × 1021 years was published in 2014. EXO set a limit on neutrinoless beta decay of 1.6×1025 years in 2012. A revised analysis of run 2 data with 100 kg·yr exposure, reported in the June issue of ''Nature'' reduced the limits on half-life to 1.1×1025 yr, and mass to 450 meV. This was used to confirm the power of the design and validate the proposed expansion. Additional running for two years was taken. EXO-200 has performed two scientific operations, Phase I (2011-2014) and after upgrades, Phase II (2016 - 2018) for a total exposure of 234.1 kg·yr. No evidence of neutrinoless double beta decay has been found in the combined Phase I and II data, giving the lower bound of 3.5 \cdot 10^ years for the half-life and upper mass of 239 meV. Phase II was the final operation of EXO-200.


nEXO

A ton-scale experiment, nEXO ("next EXO"), must overcome many backgrounds. The EXO collaboration is exploring many possibilities to do so, including barium tagging in liquid xenon. Any double beta decay event will leave behind a daughter barium ion, while backgrounds, such as radioactive impurities or neutrons, will not. Requiring a barium ion at the location of an event eliminates all backgrounds. Tagging of a single ion of barium has been demonstrated and progress has been made on a method for extracting ions out of the liquid xenon. A freezing probe method has been demonstrated, and gaseous tagging is also being developed. The 2014 EXO-200 paper indicated a 5000 kg TPC can improve the background by xenon self-shielding and better electronics. Diameter would be increased to 130 cm and a water tank would be added as shielding and muon veto. This is much larger than the attenuation length for gamma rays. Radiopure copper for nEXO has been completed. It is planned for installation in the
SNOLAB SNOLAB is a Canadian underground science laboratory specializing in neutrino and dark matter physics. Located 2 km below the surface in Vale's Creighton nickel mine near Sudbury, Ontario, SNOLAB is an expansion of the existing facilities c ...
"Cryopit". An Oct. 2017 paper details the experiment and discusses the sensitivity and the discovery potential of nEXO for neutrinoless double beta decay. Details on the ionization readout of the TPC have also been published. The pre-Conceptual Design Report (pCDR) for nEXO was published in 2018. The planned location is
SNOLAB SNOLAB is a Canadian underground science laboratory specializing in neutrino and dark matter physics. Located 2 km below the surface in Vale's Creighton nickel mine near Sudbury, Ontario, SNOLAB is an expansion of the existing facilities c ...
, Canada.


References


External links


EXO web sitenEXO web siteEXO experiment
record on
INSPIRE-HEP INSPIRE-HEP is an open access digital library for the field of high energy physics (HEP). It is the successor of the Stanford Physics Information Retrieval System (SPIRES) database, the main literature database for high energy physics since the 197 ...
{{neutrino detectors Particle experiments Neutrino experiments