Enneper surface
   HOME

TheInfoList



OR:

In
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, the Enneper surface is a self-intersecting surface that can be described parametrically by: \begin x &= \tfrac u \left(1 - \tfracu^2 + v^2\right), \\ y &= \tfrac v \left(1 - \tfracv^2 + u^2\right), \\ z & = \tfrac \left(u^2 - v^2\right). \end It was introduced by
Alfred Enneper Alfred Enneper (June 14, 1830, Barmen – March 24, 1885 Hanover) was a German mathematician. Enneper earned his PhD from the Georg-August-Universität Göttingen in 1856, under the supervision of Peter Gustav Lejeune Dirichlet, for his dissertati ...
in 1864 in connection with
minimal surface In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below). The term "minimal surface" is used because these surfaces originally arose as surfaces that ...
theory.Ulrich Dierkes, Stefan Hildebrandt, Friedrich Sauvigny (2010). Minimal Surfaces. Berlin Heidelberg: Springer. . The
Weierstrass–Enneper parameterization In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry. Alfred Enneper and Karl Weierstrass studied minimal surfaces as far back as 1863. Let f and g be functions on either t ...
is very simple, f(z)=1, g(z)=z, and the real parametric form can easily be calculated from it. The surface is conjugate to itself. Implicitization methods of
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
can be used to find out that the points in the Enneper surface given above satisfy the degree-9
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
equation \begin & 64 z^9 - 128 z^7 + 64 z^5 - 702 x^2 y^2 z^3 - 18 x^2 y^2 z + 144 (y^2 z^6 - x^2 z^6)\\ & + 162 (y^4 z^2 - x^4 z^2) + 27 (y^6 - x^6) + 9 (x^4 z + y^4 z) + 48 (x^2 z^3 + y^2 z^3)\\ & - 432 (x^2 z^5 + y^2 z^5) + 81 (x^4 y^2 - x^2 y^4) + 240 (y^2 z^4 - x^2 z^4) - 135 (x^4 z^3 + y^4 z^3) = 0. \end Dually, the
tangent plane In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
at the point with given parameters is a + b x + c y + d z = 0,\ where \begin a &= -\left(u^2 - v^2\right) \left(1 + \tfracu^2 + \tfracv^2\right), \\ b &= 6 u, \\ c &= 6 v, \\ d &= -3\left(1 - u^2 - v^2\right). \end Its coefficients satisfy the implicit degree-6 polynomial equation \begin &162 a^2 b^2 c^2 + 6 b^2 c^2 d^2 - 4 (b^6 + c^6) + 54 (a b^4 d - a c^4 d) + 81 (a^2 b^4 + a^2 c^4)\\ & + 4 (b^4 c^2 + b^2 c^4) - 3 (b^4 d^2 + c^4 d^2) + 36 (a b^2 d^3 - a c^2 d^3) = 0. \end The Jacobian,
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For ...
and
mean curvature In mathematics, the mean curvature H of a surface S is an ''extrinsic'' measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space. The ...
are \begin J &= \frac(1 + u^2 + v^2)^4, \\ K &= -\frac\frac, \\ H &= 0. \end The total curvature is -4\pi. Osserman proved that a complete minimal surface in \R^3 with total curvature -4\pi is either the
catenoid In geometry, a catenoid is a type of surface, arising by rotating a catenary curve about an axis (a surface of revolution). It is a minimal surface, meaning that it occupies the least area when bounded by a closed space. It was formally describ ...
or the Enneper surface. Another property is that all bicubical minimal
Bézier surface Bézier surfaces are a type of mathematical spline used in computer graphics, computer-aided design, and finite element modeling. As with Bézier curves, a Bézier surface is defined by a set of control points. Similar to interpolation in many ...
s are, up to an
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, '' affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More general ...
, pieces of the surface. It can be generalized to higher order rotational symmetries by using the Weierstrass–Enneper parameterization f(z) = 1, g(z) = z^k for integer k>1. It can also be generalized to higher dimensions; Enneper-like surfaces are known to exist in \R^n for n up to 7. See also E. Güler, The algebraic surfaces of the Enneper family of maximal surfaces in three dimensional Minkowski space. Axioms. 2022; 11(1):4. https://doi.org/10.3390/axioms11010004 for higher order algebraic Enneper surfaces.


References


External links

*
Mathematical Sciences Research Institute - The Generalized Enneper's Surfaces ''(Archived)''


{{DEFAULTSORT:Enneper Surface Algebraic surfaces Minimal surfaces