HOME

TheInfoList



OR:

In
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, an elementary particle or fundamental particle is a
subatomic particle In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a p ...
that is not composed of other particles. Particles currently thought to be elementary include
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s, the fundamental fermions (
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly ...
s, leptons,
antiquark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly ...
s, and antileptons, which generally are
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
particles and antimatter particles), as well as the fundamental bosons (
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of ga ...
s and the
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Stan ...
), which generally are force particles that mediate
interactions Interaction is action that occurs between two or more objects, with broad use in philosophy and the sciences. It may refer to: Science * Interaction hypothesis, a theory of second language acquisition * Interaction (statistics) * Interactions ...
among fermions. A particle containing two or more elementary particles is a composite particle. Ordinary matter is composed of
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
s, once presumed to be elementary particles – ''atomos'' meaning "unable to be cut" in Greek – although the atom's existence remained controversial until about 1905, as some leading physicists regarded molecules as mathematical illusions, and matter as ultimately composed of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
. Subatomic constituents of the atom were first identified in the early 1930s; the
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
and the
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
, along with the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
, the particle of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
. At that time, the recent advent of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
was radically altering the conception of particles, as a single particle could seemingly span a field as would a wave, a paradox still eluding satisfactory explanation. Via quantum theory,
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron m ...
and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s were found to contain
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly ...
s – up quarks and down quarks – now considered elementary particles. And within a
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
, the electron's three degrees of freedom ( charge, spin, orbital) can separate via the
wavefunction A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements ...
into three quasiparticles ( holon, spinon, and orbiton). Yet a free electron – one that is ''not'' orbiting an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
and hence lacks
orbital motion In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a ...
– appears unsplittable and remains regarded as an elementary particle. Around 1980, an elementary particle's status as indeed elementary – an ''ultimate constituent'' of substance – was mostly discarded for a more practical outlook, embodied in particle physics'
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...
, what's known as science's most experimentally successful theory. Many elaborations upon and theories beyond the Standard Model, including supersymmetry, double the number of elementary particles by hypothesizing that each known particle associates with a "shadow" partner far more massive, although all such superpartners remain undiscovered. Meanwhile, an elementary boson mediating
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
– the graviton – remains hypothetical. Also, according to some hypotheses, spacetime is quantized, so within these hypotheses there probably exist "atoms" of space and time themselves.


Overview

All elementary particles are either bosons or fermions. These classes are distinguished by their quantum statistics: fermions obey Fermi–Dirac statistics and bosons obey Bose–Einstein statistics. Their spin is differentiated via the spin–statistics theorem: it is half-integer for fermions, and
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
for bosons. In the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...
, elementary particles are represented for predictive utility as point particles. Though extremely successful, the Standard Model is limited by its omission of
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
and has some parameters arbitrarily added but unexplained.


Cosmic abundance of elementary particles

According to the current models of big bang nucleosynthesis, the primordial composition of visible matter of the universe should be about 75% hydrogen and 25% helium-4 (in mass). Neutrons are made up of one up and two down quarks, while protons are made of two up and one down quark. Since the other common elementary particles (such as electrons, neutrinos, or weak bosons) are so light or so rare when compared to atomic nuclei, we can neglect their mass contribution to the observable universe's total mass. Therefore, one can conclude that most of the visible mass of the universe consists of protons and neutrons, which, like all
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifie ...
s, in turn consist of up quarks and down quarks. Some estimates imply that there are roughly baryons (almost entirely protons and neutrons) in the observable universe. The number of protons in the observable universe is called the Eddington number. In terms of number of particles, some estimates imply that nearly all the matter, excluding
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
, occurs in neutrinos, which constitute the majority of the roughly elementary particles of matter that exist in the visible universe. Other estimates imply that roughly elementary particles exist in the visible universe (not including
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
), mostly photons and other massless force carriers.


Standard Model

The Standard Model of particle physics contains 12 flavors of elementary fermions, plus their corresponding antiparticles, as well as elementary bosons that mediate the forces and the
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Stan ...
, which was reported on July 4, 2012, as having been likely detected by the two main experiments at the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundr ...
(
ATLAS An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geogra ...
and
CMS CMS may refer to: Computing * Call management system * CMS-2 (programming language), used by the United States Navy * Code Morphing Software, a technology used by Transmeta * Collection management system for a museum collection * Color manage ...
). The Standard Model is widely considered to be a provisional theory rather than a truly fundamental one, however, since it is not known if it is compatible with Einstein's
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
. There may be hypothetical elementary particles not described by the Standard Model, such as the graviton, the particle that would carry the gravitational force, and sparticles, supersymmetric partners of the ordinary particles.


Fundamental fermions

The 12 fundamental fermions are divided into 3 
generations A generation is "all of the people born and living at about the same time, regarded collectively." Generation or generations may also refer to: Science and technology * Generation (particle physics), a division of the elementary particles * Gen ...
of 4 particles each. Half of the fermions are leptons, three of which have an electric charge of −1, called the electron (), the
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As w ...
(), and the tau (); the other three leptons are neutrinos (, , ), which are the only elementary fermions with neither electric nor color charge. The remaining six particles are
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly ...
s (discussed below).


Generations


Mass

The following table lists current measured masses and mass estimates for all the fermions, using the same scale of measure: millions of electron-volts relative to square of light speed (MeV/c2). For example, the most accurately known quark mass is of the top quark () at or , estimated using the
On-shell scheme In quantum field theory, and especially in quantum electrodynamics, the interacting theory leads to infinite quantities that have to be absorbed in a renormalization procedure, in order to be able to predict measurable quantities. The renormalizat ...
. Estimates of the values of quark masses depend on the version of quantum chromodynamics used to describe quark interactions. Quarks are always confined in an envelope of
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind ...
s that confer vastly greater mass to the mesons and
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifie ...
s where quarks occur, so values for quark masses cannot be measured directly. Since their masses are so small compared to the effective mass of the surrounding gluons, slight differences in the calculation make large differences in the masses.


Antiparticles

There are also 12 fundamental fermionic antiparticles that correspond to these 12 particles. For example, the antielectron (positron) ' is the electron's antiparticle and has an electric charge of +1.


Quarks

Isolated quarks and antiquarks have never been detected, a fact explained by
confinement Confinement may refer to * With respect to humans: ** An old-fashioned or archaic synonym for childbirth ** Postpartum confinement (or postnatal confinement), a system of recovery after childbirth, involving rest and special foods ** Civil confi ...
. Every quark carries one of three color charges of the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
; antiquarks similarly carry anticolor. Color-charged particles interact via
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind ...
exchange in the same way that charged particles interact via
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
exchange. Gluons are themselves color-charged, however, resulting in an amplification of the strong force as color-charged particles are separated. Unlike the electromagnetic force, which diminishes as charged particles separate, color-charged particles feel increasing force. Nonetheless, color-charged particles may combine to form color neutral composite particles called
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s. A quark may pair up with an antiquark: the quark has a color and the antiquark has the corresponding anticolor. The color and anticolor cancel out, forming a color neutral meson. Alternatively, three quarks can exist together, one quark being "red", another "blue", another "green". These three colored quarks together form a color-neutral
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifie ...
. Symmetrically, three antiquarks with the colors "antired", "antiblue" and "antigreen" can form a color-neutral antibaryon. Quarks also carry fractional
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons res ...
s, but, since they are confined within hadrons whose charges are all integral, fractional charges have never been isolated. Note that quarks have electric charges of either + or −, whereas antiquarks have corresponding electric charges of either − or +. Evidence for the existence of quarks comes from
deep inelastic scattering Deep inelastic scattering is the name given to a process used to probe the insides of hadrons (particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos. It provided the first convincing evidence of the realit ...
: firing
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s at nuclei to determine the distribution of charge within nucleons (which are baryons). If the charge is uniform, the electric field around the proton should be uniform and the electron should scatter elastically. Low-energy electrons do scatter in this way, but, above a particular energy, the protons deflect some electrons through large angles. The recoiling electron has much less energy and a jet of particles is emitted. This inelastic scattering suggests that the charge in the proton is not uniform but split among smaller charged particles: quarks.


Fundamental bosons

In the Standard Model, vector ( spin-1) bosons (
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind ...
s,
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
s, and the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
) mediate forces, whereas the
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Stan ...
(spin-0) is responsible for the intrinsic
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
of particles. Bosons differ from fermions in the fact that multiple bosons can occupy the same quantum state (
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formula ...
). Also, bosons can be either elementary, like photons, or a combination, like mesons. The spin of bosons are integers instead of half integers.


Gluons

Gluons mediate the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
, which join quarks and thereby form
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s, which are either
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifie ...
s (three quarks) or mesons (one quark and one antiquark). Protons and neutrons are baryons, joined by gluons to form the
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
. Like quarks, gluons exhibit
color Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...
and anticolor – unrelated to the concept of visual color and rather the particles' strong interactions – sometimes in combinations, altogether eight variations of gluons.


Electroweak bosons

There are three weak gauge bosons: W+, W, and Z0; these mediate the weak interaction. The W bosons are known for their mediation in nuclear decay: The W converts a neutron into a proton then decays into an electron and electron-antineutrino pair. The Z0 does not convert particle flavor or charges, but rather changes momentum; it is the only mechanism for elastically scattering neutrinos. The weak gauge bosons were discovered due to momentum change in electrons from neutrino-Z exchange. The massless
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
mediates the electromagnetic interaction. These four gauge bosons form the electroweak interaction among elementary particles.


Higgs boson

Although the weak and electromagnetic forces appear quite different to us at everyday energies, the two forces are theorized to unify as a single
electroweak force In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very diffe ...
at high energies. This prediction was clearly confirmed by measurements of cross-sections for high-energy electron-proton scattering at the
HERA In ancient Greek religion, Hera (; grc-gre, Ἥρα, Hḗrā; grc, Ἥρη, Hḗrē, label=none in Ionic and Homeric Greek) is the goddess of marriage, women and family, and the protector of women during childbirth. In Greek mythology, she ...
collider at DESY. The differences at low energies is a consequence of the high masses of the W and Z bosons, which in turn are a consequence of the
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property " mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other b ...
. Through the process of spontaneous symmetry breaking, the Higgs selects a special direction in electroweak space that causes three electroweak particles to become very heavy (the weak bosons) and one to remain with an undefined rest mass as it is always in motion (the photon). On 4 July 2012, after many years of experimentally searching for evidence of its existence, the
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Stan ...
was announced to have been observed at CERN's Large Hadron Collider.
Peter Higgs Peter Ware Higgs (born 29 May 1929) is a British theoretical physicist, Emeritus Professor in the University of Edinburgh,Griggs, Jessica (Summer 2008The Missing Piece ''Edit'' the University of Edinburgh Alumni Magazine, p. 17 and Nobel Prize ...
who first posited the existence of the Higgs boson was present at the announcement. The Higgs boson is believed to have a mass of approximately 125 GeV. The
statistical significance In statistical hypothesis testing, a result has statistical significance when it is very unlikely to have occurred given the null hypothesis (simply by chance alone). More precisely, a study's defined significance level, denoted by \alpha, is the p ...
of this discovery was reported as 5 sigma, which implies a certainty of roughly 99.99994%. In particle physics, this is the level of significance required to officially label experimental observations as a
discovery Discovery may refer to: * Discovery (observation), observing or finding something unknown * Discovery (fiction), a character's learning something unknown * Discovery (law), a process in courts of law relating to evidence Discovery, The Discove ...
. Research into the properties of the newly discovered particle continues.


Graviton

The graviton is a hypothetical elementary spin-2 particle proposed to mediate gravitation. While it remains undiscovered due to the difficulty inherent in its detection, it is sometimes included in tables of elementary particles. The conventional graviton is massless, although some models containing massive Kaluza–Klein gravitons exist.


Beyond the Standard Model

Although experimental evidence overwhelmingly confirms the predictions derived from the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...
, some of its parameters were added arbitrarily, not determined by a particular explanation, which remain mysterious, for instance the
hierarchy problem In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than grav ...
. Theories beyond the Standard Model attempt to resolve these shortcomings.


Grand unification

One extension of the Standard Model attempts to combine the electroweak interaction with the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
into a single 'grand unified theory' (GUT). Such a force would be
spontaneously broken Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the ...
into the three forces by a Higgs-like mechanism. This breakdown is theorized to occur at high energies, making it difficult to observe unification in a laboratory. The most dramatic prediction of grand unification is the existence of X and Y bosons, which cause proton decay. The non-observation of proton decay at the Super-Kamiokande neutrino observatory rules out the simplest GUTs, however, including SU(5) and SO(10).


Supersymmetry

Supersymmetry extends the Standard Model by adding another class of symmetries to the Lagrangian. These symmetries exchange fermionic particles with bosonic ones. Such a symmetry predicts the existence of supersymmetric particles, abbreviated as '' sparticles'', which include the
slepton In supersymmetric extension to the Standard Model (SM) of physics, a sfermion is a hypothetical spin-0 superpartner particle (sparticle) of its associated fermion. Each particle has a superpartner with spin that differs by . Fermions in the SM h ...
s, squarks, neutralinos, and charginos. Each particle in the Standard Model would have a superpartner whose spin differs by from the ordinary particle. Due to the breaking of supersymmetry, the sparticles are much heavier than their ordinary counterparts; they are so heavy that existing particle colliders would not be powerful enough to produce them. Some physicists believe that sparticles will be detected by the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundr ...
at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gen ...
.


String theory

String theory is a model of physics whereby all "particles" that make up
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
are composed of strings (measuring at the Planck length) that exist in an 11-dimensional (according to
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witt ...
, the leading version) or 12-dimensional (according to
F-theory In theoretical physics, F-theory is a branch of string theory developed by Iranian physicist Cumrun Vafa. The new vacua described by F-theory were discovered by Vafa and allowed string theorists to construct new realistic vacua — in the fo ...
) universe. These strings vibrate at different frequencies that determine mass, electric charge, color charge, and spin. A "string" can be open (a line) or closed in a loop (a one-dimensional sphere, that is, a circle). As a string moves through space it sweeps out something called a ''
world sheet In its most general sense, the term "world" refers to the totality of entities, to the whole of reality or to everything that is. The nature of the world has been conceptualized differently in different fields. Some conceptions see the worl ...
''. String theory predicts 1- to 10-branes (a 1- brane being a string and a 10-brane being a 10-dimensional object) that prevent tears in the "fabric" of space using the uncertainty principle (e.g., the electron orbiting a hydrogen atom has the probability, albeit small, that it could be anywhere else in the universe at any given moment). String theory proposes that our universe is merely a 4-brane, inside which exist the 3 space dimensions and the 1 time dimension that we observe. The remaining 7 theoretical dimensions either are very tiny and curled up (and too small to be macroscopically accessible) or simply do not/cannot exist in our universe (because they exist in a grander scheme called the " multiverse" outside our known universe). Some predictions of the string theory include existence of extremely massive counterparts of ordinary particles due to vibrational excitations of the fundamental string and existence of a massless spin-2 particle behaving like the graviton.


Technicolor

Technicolor theories try to modify the Standard Model in a minimal way by introducing a new QCD-like interaction. This means one adds a new theory of so-called Techniquarks, interacting via so called Technigluons. The main idea is that the Higgs boson is not an elementary particle but a bound state of these objects.


Preon theory

According to preon theory there are one or more orders of particles more fundamental than those (or most of those) found in the Standard Model. The most fundamental of these are normally called preons, which is derived from "pre-quarks". In essence, preon theory tries to do for the Standard Model what the Standard Model did for the
particle zoo In particle physics, the term particle zoo is used colloquially to describe the relatively extensive list of known subatomic particles by comparison to the variety of species in a zoo. In the history of particle physics, the topic of particles was ...
that came before it. Most models assume that almost everything in the Standard Model can be explained in terms of three to six more fundamental particles and the rules that govern their interactions. Interest in preons has waned since the simplest models were experimentally ruled out in the 1980s.


Acceleron theory

Acceleron An Acceleron is a hypothetical subatomic particle postulated to relate the mass of the neutrino to the dark energy conjectured to be responsible for the accelerating expansion of the universe Observations show that the expansion of the univers ...
s are the hypothetical
subatomic particle In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a p ...
s that integrally link the newfound mass of the neutrino to the
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
conjectured to be accelerating the expansion of the universe. In this theory, neutrinos are influenced by a new force resulting from their interactions with accelerons, leading to dark energy. Dark energy results as the universe tries to pull neutrinos apart. Accelerons are thought to interact with matter more infrequently than they do with neutrinos.


See also

* Asymptotic freedom * List of particles * Physical ontology * Quantum field theory * Quantum gravity * Quantum triviality *
UV fixed point In a quantum field theory, one may calculate an effective or running coupling constant that defines the coupling of the theory measured at a given momentum scale. One example of such a coupling constant is the electric charge. In approximate cal ...


Notes


Further reading


General readers

* Feynman, R.P. & Weinberg, S. (1987) ''Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures''. Cambridge Univ. Press. *Ford, Kenneth W. (2005) ''The Quantum World''. Harvard Univ. Press. * * John Gribbin (2000) ''Q is for Quantum – An Encyclopedia of Particle Physics''. Simon & Schuster. . *Oerter, Robert (2006) ''The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics''. Plume. *Schumm, Bruce A. (2004) ''Deep Down Things: The Breathtaking Beauty of Particle Physics''. Johns Hopkins University Press. . * * *


Textbooks

* Bettini, Alessandro (2008) ''Introduction to Elementary Particle Physics''. Cambridge Univ. Press. *Coughlan, G. D., J. E. Dodd, and B. M. Gripaios (2006) ''The Ideas of Particle Physics: An Introduction for Scientists'', 3rd ed. Cambridge Univ. Press. An undergraduate text for those not majoring in physics. * Griffiths, David J. (1987) ''Introduction to Elementary Particles''. John Wiley & Sons. . * *Perkins, Donald H. (2000) ''Introduction to High Energy Physics'', 4th ed. Cambridge Univ. Press.


External links

The most important address about the current experimental and theoretical knowledge about elementary particle physics is the
Particle Data Group The Particle Data Group (or PDG) is an international collaboration of particle physicists that compiles and reanalyzes published results related to the properties of particles and fundamental interactions. It also publishes reviews of theoretical ...
, where different international institutions collect all experimental data and give short reviews over the contemporary theoretical understanding. * other pages are:
particleadventure.org
a well-made introduction also for non physicists
CERNCourier: Season of Higgs and melodrama

Interactions.org
particle physics news
Symmetry Magazine
a joint
Fermilab Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been oper ...
/ SLAC publication
Elementary Particles made thinkable
an interactive visualisation allowing physical properties to be compared {{Authority control Quantum mechanics Quantum field theory Subatomic particles