HOME

TheInfoList



OR:

The Einstein–de Sitter universe is a model of the universe proposed by
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
and Willem de Sitter in 1932. On first learning of
Edwin Hubble Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology. Hubble proved that many objects previousl ...
's discovery of a linear relation between the redshift of the galaxies and their distance, Einstein set the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
to zero in the
Friedmann equations The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann ...
, resulting in a model of the expanding universe known as the
Friedmann–Einstein universe The Friedmann–Einstein universe is a model of the universe published by Albert Einstein in 1931. The model is of historic significance as the first scientific publication in which Einstein embraced the possibility of a cosmos of time-varying radiu ...
. In 1932, Einstein and De Sitter proposed an even simpler cosmic model by assuming a vanishing
spatial curvature General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
as well as a vanishing cosmological constant. In modern parlance, the Einstein–de Sitter universe can be described as a
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
model for a flat matter-only
Friedmann–Lemaître–Robertson–Walker metric The Friedmann–Lemaître–Robertson–Walker (FLRW; ) metric is a metric based on the exact solution of Einstein's field equations of general relativity; it describes a homogeneous, isotropic, expanding (or otherwise, contracting) universe tha ...
(FLRW) universe. Lars Bergström & Ariel Goobar: "''Cosmology and Particle Astrophysics''", 2nd ed.
Springer Springer or springers may refer to: Publishers * Springer Science+Business Media, aka Springer International Publishing, a worldwide publishing group founded in 1842 in Germany formerly known as Springer-Verlag. ** Springer Nature, a multinationa ...
(2004), p. 70+77. .
In the model, Einstein and de Sitter derived a simple relation between the average density of matter in the universe and its expansion according to ''H''02 = ''кρ''/3, where ''H''0 is the
Hubble constant Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving ...
, ''ρ'' is the average density of matter and ''к'' is the
Einstein gravitational constant In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the for ...
. The size of the Einstein–de Sitter universe evolves with time as a\propto t^, making its current age 2/3 times the
Hubble time Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
. The Einstein–de Sitter universe became a standard model of the universe for many years because of its simplicity and because of a lack of empirical evidence for either spatial curvature or a cosmological constant. It also represented an important theoretical case of a universe of critical matter density poised just at the limit of eventually contracting. However, Einstein's later reviews of cosmology make it clear that he saw the model as only one of several possibilities for the expanding universe. The Einstein–de Sitter universe was particularly popular in the 1980s, after the theory of
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from  seconds after the conjectured Big Bang singular ...
predicted that the curvature of the universe should be very close to zero. This case with zero
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
implies the Einstein–de Sitter model, and the theory of
cold dark matter In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only a sm ...
was developed, initially with a cosmic matter budget around 95% cold dark matter and 5% baryons. However, in the 1990s various observations including galaxy clustering and measurements of the
Hubble constant Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving ...
led to increasingly serious problems for this model. Following the discovery of the
accelerating universe Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered duri ...
in 1998, and observations of the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
and galaxy
redshift survey In astronomy, a redshift survey is a survey of a section of the sky to measure the redshift of astronomical objects: usually galaxies, but sometimes other objects such as galaxy clusters or quasars. Using Hubble's law, the redshift can be used ...
s in 2000–2003, it is now generally accepted that
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
makes up around 70 percent of the present energy density while
cold dark matter In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only a sm ...
contributes around 25 percent, as in the modern
Lambda-CDM model The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda ( Greek Λ) associated ...
. The Einstein–de Sitter model remains a good approximation to our universe in the past at redshifts between around 300 and 2, i.e. well after the radiation-dominated era but before dark energy became important.


See also

*
Shape of the universe The shape of the universe, in physical cosmology, is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes ge ...
*
de Sitter universe A de Sitter universe is a cosmological solution to the Einstein field equations of general relativity, named after Willem de Sitter. It models the universe as spatially flat and neglects ordinary matter, so the dynamics of the universe are domin ...
*
Ultimate fate of the universe The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational e ...


Notes and references

{{DEFAULTSORT:Einstein-de Sitter universe General relativity Albert Einstein