HOME

TheInfoList



OR:

Ehrenfest equations (named after
Paul Ehrenfest Paul Ehrenfest (18 January 1880 – 25 September 1933) was an Austrian theoretical physicist, who made major contributions to the field of statistical mechanics and its relations with quantum mechanics, including the theory of phase transition an ...
) are equations which describe changes in specific
heat capacity Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity i ...
and derivatives of
specific volume In thermodynamics, the specific volume of a substance (symbol: , nu) is an intrinsic property of the substance, defined as the ratio of the substance's volume () to its mass (). It is the reciprocal of density ( rho) and it is related to the m ...
in second-order
phase transitions In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of ...
. The
Clausius–Clapeyron relation The Clausius–Clapeyron relation, named after Rudolf Clausius and Benoît Paul Émile Clapeyron, specifies the temperature dependence of pressure, most importantly vapor pressure, at a discontinuous phase transition between two phases of matter ...
does not make sense for second-order phase transitions,Sivuhin D.V. General physics course. V.2. ''Thermodynamics and molecular physics''. 2005 as both specific
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodyna ...
and
specific volume In thermodynamics, the specific volume of a substance (symbol: , nu) is an intrinsic property of the substance, defined as the ratio of the substance's volume () to its mass (). It is the reciprocal of density ( rho) and it is related to the m ...
do not change in second-order phase transitions.


Quantitative consideration

Ehrenfest equations are the consequence of continuity of specific entropy s and specific volume v, which are first derivatives of specific
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature and p ...
– in second-order phase transitions. If one considers specific entropy s as a function of
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
and
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and ...
, then its differential is: ds = \left( \right)_P dT + \left( \right)_T dP. As \left( \right)_P = , \left( \right)_T = - \left( \right)_P , then the differential of specific entropy also is: d = dT - \left( \right)_P dP, where i=1 and i=2 are the two phases which transit one into other. Due to continuity of specific entropy, the following holds in second-order phase transitions: = . So, \left( \right) = \left \rightP Therefore, the first Ehrenfest equation is: . The second Ehrenfest equation is got in a like manner, but specific entropy is considered as a function of temperature and specific volume: The third Ehrenfest equation is got in a like manner, but specific entropy is considered as a function of v and P: . Continuity of specific volume as a function of T and P gives the fourth Ehrenfest equation: {\Delta \left( \right)_P = - \Delta \left( {\left( \right)_T } \right) \cdot {{dP} \over {dT}.


Limitations

Derivatives of
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature and p ...
are not always finite. Transitions between different magnetic states of metals can't be described by Ehrenfest equations.


See also

*
Paul Ehrenfest Paul Ehrenfest (18 January 1880 – 25 September 1933) was an Austrian theoretical physicist, who made major contributions to the field of statistical mechanics and its relations with quantum mechanics, including the theory of phase transition an ...
*
Clausius–Clapeyron relation The Clausius–Clapeyron relation, named after Rudolf Clausius and Benoît Paul Émile Clapeyron, specifies the temperature dependence of pressure, most importantly vapor pressure, at a discontinuous phase transition between two phases of matter ...
*
Phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of ...


References

Thermodynamic equations