HOME

TheInfoList



OR:

Erosion (usually represented by ⊖) is one of two fundamental operations (the other being
dilation wiktionary:dilation, Dilation (or dilatation) may refer to: Physiology or medicine * Cervical dilation, the widening of the cervix in childbirth, miscarriage etc. * Coronary dilation, or coronary reflex * Dilation and curettage, the opening of ...
) in morphological image processing from which all other morphological operations are based. It was originally defined for
binary image A binary image is a digital image that consists of pixels that can have one of exactly two colors, usually black and white. Each pixel is stored as a single bit — i.e. either a 0 or 1. A binary image can be stored in memory as a bitmap: a p ...
s, later being extended to
grayscale In digital photography, computer-generated imagery, and colorimetry, a greyscale (more common in Commonwealth English) or grayscale (more common in American English) image is one in which the value of each pixel is a single sample (signal), s ...
images, and subsequently to
complete lattice In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum ( join) and an infimum ( meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For compariso ...
s. The erosion operation usually uses a
structuring element In mathematical morphology, a structuring element is a shape, used to probe or interact with a given image, with the purpose of drawing conclusions on how this shape fits or misses the shapes in the image. It is typically used in morphological oper ...
for probing and reducing the shapes contained in the input image.


Binary erosion

In binary morphology, an image is viewed as a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
\mathbb^d or the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
grid Grid, The Grid, or GRID may refer to: Space partitioning * Regular grid, a tessellation of space with translational symmetry, typically formed from parallelograms or higher-dimensional analogs ** Grid graph, a graph structure with nodes connec ...
\mathbb^d, for some dimension ''d''. The basic idea in binary morphology is to probe an image with a simple, pre-defined shape, drawing conclusions on how this shape fits or misses the shapes in the image. This simple "probe" is called
structuring element In mathematical morphology, a structuring element is a shape, used to probe or interact with a given image, with the purpose of drawing conclusions on how this shape fits or misses the shapes in the image. It is typically used in morphological oper ...
, and is itself a binary image (i.e., a subset of the space or grid). Let ''E'' be a Euclidean space or an integer grid, and ''A'' a binary image in ''E''. The erosion of the binary image ''A'' by the structuring element ''B'' is defined by: :A \ominus B = \, where ''B''''z'' is the translation of ''B'' by the vector z, i.e., B_z = \, \forall z\in E. When the structuring element ''B'' has a center (e.g., a disk or a square), and this center is located on the origin of ''E'', then the erosion of ''A'' by ''B'' can be understood as the locus of points reached by the center of ''B'' when ''B'' moves inside ''A''. For example, the erosion of a square of side 10, centered at the origin, by a disc of radius 2, also centered at the origin, is a square of side 6 centered at the origin. The erosion of ''A'' by ''B'' is also given by the expression: A \ominus B = \bigcap_ A_, where ''A−b'' denotes the translation of ''A'' by ''-b''. This is more generally also known as a
Minkowski difference In geometry, the Minkowski sum of two set (mathematics), sets of position vectors ''A'' and ''B'' in Euclidean space is formed by vector addition, adding each vector in ''A'' to each vector in ''B'': A + B = \ The Minkowski difference (also ''M ...
.


Example

Suppose A is a 13 x 13 matrix and B is a 3 x 3 matrix: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Assuming that the origin B is at its center, for each pixel in A superimpose the origin of B, if B is completely contained by A the pixel is retained, else deleted. Therefore the Erosion of A by B is given by this 13 x 13 matrix. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 This means that only when B is completely contained inside A that the pixels values are retained, otherwise it gets deleted or eroded.


Properties

* The erosion is
translation invariant In physics and mathematics, continuous translational symmetry is the invariance of a system of equations under any translation (without rotation). Discrete translational symmetry is invariant under discrete translation. Analogously, an operato ...
. * It is increasing, that is, if A\subseteq C, then A\ominus B \subseteq C\ominus B. * If the origin of ''E'' belongs to the structuring element ''B'', then the erosion is ''anti-extensive'', i.e., A\ominus B\subseteq A. * The erosion satisfies (A\ominus B)\ominus C = A\ominus (B\oplus C), where \oplus denotes the morphological dilation. * The erosion is distributive over
set intersection In set theory, the intersection of two sets A and B, denoted by A \cap B, is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A. Notation and terminology Intersection is writt ...


Grayscale erosion

In
grayscale In digital photography, computer-generated imagery, and colorimetry, a greyscale (more common in Commonwealth English) or grayscale (more common in American English) image is one in which the value of each pixel is a single sample (signal), s ...
morphology, images are functions mapping a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
or
grid Grid, The Grid, or GRID may refer to: Space partitioning * Regular grid, a tessellation of space with translational symmetry, typically formed from parallelograms or higher-dimensional analogs ** Grid graph, a graph structure with nodes connec ...
''E'' into \mathbb\cup\, where \mathbb is the set of reals, \infty is an element larger than any real number, and -\infty is an element smaller than any real number. Denoting an image by ''f(x)'' and the grayscale structuring element by ''b(x)'', where B is the space that b(x) is defined, the grayscale erosion of ''f'' by ''b'' is given by ::(f\ominus b)(x)=\inf_
(x+y)-b(y) X, or x, is the twenty-fourth letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''ex'' (pronounced ), plural ''exes''."X", ' ...
/math>, where "inf" denotes the
infimum In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique ...
. In other words the erosion of a point is the minimum of the points in its neighborhood, with that neighborhood defined by the structuring element. In this way it is similar to many other kinds of image filters like the
median filter The median filter is a non-linear digital filtering technique, often used to remove signal noise, noise from an image, signal, and video. Such noise reduction is a typical pre-processing step to improve the results of later processing (for example ...
and the
gaussian filter In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter (signal processing), filter whose impulse response is a Gaussian function (or an approximation to it, since a true Gaussian response would h ...
.


Erosions on complete lattices

Complete lattice In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum ( join) and an infimum ( meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For compariso ...
s are
partially ordered set In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
s, where every subset has an
infimum In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique ...
and a
supremum In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, ...
. In particular, it contains a
least element In mathematics, especially in order theory, the greatest element of a subset S of a partially ordered set (poset) is an element of S that is greater than every other element of S. The term least element is defined dually, that is, it is an ele ...
and a
greatest element In mathematics, especially in order theory, the greatest element of a subset S of a partially ordered set (poset) is an element of S that is greater than every other element of S. The term least element is defined duality (order theory), dually ...
(also denoted "universe"). Let (L,\leq) be a complete lattice, with infimum and supremum symbolized by \wedge and \vee, respectively. Its universe and least element are symbolized by ''U'' and \emptyset, respectively. Moreover, let \ be a collection of elements from ''L''. An erosion in (L,\leq) is any operator \varepsilon: L\rightarrow L that distributes over the infimum, and preserves the universe. I.e.: * \bigwedge_\varepsilon(X_i)=\varepsilon\left(\bigwedge_ X_i\right), * \varepsilon(U)=U.


See also

*
Mathematical morphology Mathematical morphology (MM) is a theory and technique for the analysis and processing of Geometry, geometrical structures, based on set theory, lattice theory, topology, and random functions. MM is most commonly applied to digital images, but it ...
*
Dilation wiktionary:dilation, Dilation (or dilatation) may refer to: Physiology or medicine * Cervical dilation, the widening of the cervix in childbirth, miscarriage etc. * Coronary dilation, or coronary reflex * Dilation and curettage, the opening of ...
*
Opening Opening may refer to: Types of openings * Hole * A title sequence or opening credits * Grand opening of a business or other institution * Inauguration * Keynote * Opening sentence * Opening sequence * Opening statement, a beginning statemen ...
* Closing


References

* ''Image Analysis and Mathematical Morphology'' by Jean Serra, (1982) * ''Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances'' by Jean Serra, (1988) * ''An Introduction to Morphological Image Processing'' by Edward R. Dougherty, (1992) * ''Morphological Image Analysis; Principles and Applications'' by Pierre Soille, {{ISBN, 3-540-65671-5 (1999) * R. C. Gonzalez and R. E. Woods, ''Digital image processing'', 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 2002. Digital geometry Mathematical morphology