Epithelial Polarity
   HOME

TheInfoList



OR:

Epithelial polarity is one example of the
cell polarity Cell polarity refers to spatial differences in shape, structure, and function within a cell. Almost all cell types exhibit some form of polarity, which enables them to carry out specialized functions. Classical examples of polarized cells are de ...
that is a fundamental feature of many types of cells. Epithelial cells feature distinct 'apical', 'lateral' and 'basal'
plasma membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
domains. Epithelial cells connect to one another via their lateral membranes to form epithelial sheets that line cavities and surfaces throughout the animal body. Each plasma membrane domain has a distinct protein composition, giving them distinct properties and allowing directional transport of molecules across the epithelial sheet. How epithelial cells generate and maintain polarity remains unclear, but certain molecules have been found to play a key role. A variety of molecules are located at the apical membrane, but only a few key molecules act as determinants that are required to maintain the identity of the apical membrane and, thus, epithelial polarity. These molecules are the proteins Cdc42, atypical protein kinase C (aPKC), Par6, Par3/Bazooka/ASIP. Crumbs, "Stardust" and protein at tight junctions (PATJ). These molecules appear to form two distinct complexes: an aPKC-Par3-Par6 "aPKC" (or "Par") complex that also interacts with Cdc42; and a Crumbs-Stardust-PATJ "Crumbs" complex. Of these two complexes, the aPKC complex is the most important for epithelial polarity, being required even when the Crumbs complex is not. Crumbs is the only transmembrane protein in this list and the Crumbs complex serves as an apical cue to keep the aPKC complex apical during complex cellular shape changes.


Basolateral membranes

In the context of renal tubule physiology, the term
basolateral membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extra ...
refers to the
cell membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
which is oriented ''away'' from the lumen of the tubule, whereas the term apical or luminal membrane refers to the
cell membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
which is oriented ''towards'' the lumen. The principal function of this basolateral membrane is to take up
metabolic Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the ...
waste products into the
epithelial cell Epithelium or epithelial tissue is a thin, continuous, protective layer of Cell (biology), cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial (Mesothelium, mesothelial) tissues line ...
for disposal into the lumen where it is transported out of the body as
urine Urine is a liquid by-product of metabolism in humans and many other animals. In placental mammals, urine flows from the Kidney (vertebrates), kidneys through the ureters to the urinary bladder and exits the urethra through the penile meatus (mal ...
. A secondary role of the basolateral membrane is to allow the recycling of desirable substrates, such as
glucose Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
, that have been rescued from the lumen of the tubule to be secreted into the
interstitial fluid In cell biology, extracellular fluid (ECF) denotes all body fluid outside the Cell (biology), cells of any multicellular organism. Body water, Total body water in healthy adults is about 50–60% (range 45 to 75%) of total body weight; women ...
s. Basal and lateral membranes share common determinants, the proteins LLGL1, DLG1, and SCRIB. These three proteins all localize to the basolateral domain and are essential for basolateral identity and for epithelial polarity.


Mechanisms of polarity

How epithelial cells polarize is still not fully understood. Some key principles have been proposed to maintain polarity, but the mechanisms behind these principles remain to be discovered. The first principle is
positive feedback Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop where the outcome of a process reinforces the inciting process to build momentum. As such, these forces can exacerbate the effects ...
. In computer models, a molecule that can be either membrane-associated or cytoplasmic can polarize when its association with the membrane is subject to positive feedback: that membrane localization occurs most strongly where the molecule is already most highly concentrated. In similar models, researchers have shown that epithelial cells can self-assemble into a rich set of robust biological shapes. In the yeast
saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
, there is genetic evidence that Cdc42 is subject to positive feedback of this kind and can spontaneously polarize, even in the absence of an external cue. In the fruit fly
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (an insect of the Order (biology), order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly", "pomace fly" ...
, Cdc42 is recruited by the aPKC complex and then promotes the apical localization of the aPKC complex in a probable positive feedback loop. Thus, in the absence of Cdc42 or the aPKC complex, apical determinants cannot be maintained at the apical membrane and consequently, apical identity and polarity is lost. The second principle is segregation of polarity determinants. The sharp distinction between apical and baso-lateral domains is maintained by an active mechanism that prevents mixing. The nature of this mechanism is not known, but it clearly depends on the polarity determinants. In the absence of the aPKC complex, the baso-lateral determinants spread into the former apical domain. Conversely, in the absence of any of Lgl, Dlg or Scrib, the apical determinants spread into the former baso-lateral domain. Thus, the two determinants behave as if they exert mutual repulsion upon one another. The third principle is directed
exocytosis Exocytosis is a term for the active transport process that transports large molecules from cell to the extracellular area. Hormones, proteins and neurotransmitters are examples of large molecules that can be transported out of the cell. Exocytosis ...
. Apical membrane proteins are trafficked from the Golgi to the apical, rather than baso-lateral, membrane because apical determinants serve to identify the correct destination for vesicle delivery. A related mechanism is likely to operate for the baso-lateral membranes. The fourth principle is lipid modification. A component of the lipid bilayer, phosphatidyl inositol phosphate (PIP) can be phosphorylated to form PIP2 and PIP3. In some epithelial cells, PIP2 is apically localised while PIP3 is basolaterally localised. In at least one cultured cell line, the MDCK cell, this system is required for epithelial polarity. The relationship between this system and the polarity determinants in animal tissues remains unclear.


Basal versus lateral

Since basal and lateral membranes share the same determinants, another mechanism must make the difference between the two domains. Cell shape and contacts provide the likely mechanism. Lateral membranes are the site of contact between epithelial cells, whereas basal membranes connect epithelial cells to the
basement membrane The basement membrane, also known as base membrane, is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tis ...
, an extracellular matrix layer that lies along the basal surface of the epithelium. Certain molecules, such as
Integrin Integrins are transmembrane receptors that help cell–cell and cell–extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, o ...
s, localise specifically to the basal membrane and form connections with the extracellular matrix.


Epithelial cell shape

Epithelial cells come in a variety of shapes that relate to their function in development or physiology. How epithelial cells adopt particular shapes is poorly understood, but it must involve spatial control of the actin cytoskeleton, which is central to cell shape in all plant cells. ''Apical snouts'', also called ''apical blebs'', are small protrusions of cytoplasm towards the lumen. They are found normally in apocrine cells, and can also appear in apocrine
metaplasia Metaplasia () is the transformation of a cell type to another cell type. The change from one type of cell to another may be part of a normal maturation process, or caused by some sort of abnormal stimulus. In simplistic terms, it is as if the ...
and columnar cell changes in the breast.


Epithelial cadherin

All epithelial cells express the transmembrane adhesion molecule
E-cadherin Cadherin-1 or Epithelial cadherin (E-cadherin), is a protein that in humans is encoded by the ''CDH1'' gene (not to be confused with the APC/C activator protein CDH1). Mutations are correlated with Hereditary diffuse gastric cancer, gastric, Here ...
, a
cadherin Cadherins (named for "calcium-dependent adhesion") are cell adhesion molecules important in forming adherens junctions that let cells adhere to each other. Cadherins are a class of type-1 transmembrane proteins, and they depend on calcium (Ca2+) ...
which localises most prominently to the junction between the apical and lateral membranes. The extra-cellular domains of E-cadherin molecules from neighbouring cells bind to one another via a homotypic interaction. The intra-cellular domains of E-cadherin molecules bind to the actin cytoskeleton via the adaptor proteins alpha-catenin and
beta-catenin Catenin beta-1, also known as β-catenin (''beta''-catenin), is a protein that in humans is encoded by the ''CTNNB1'' gene. β-Catenin is a dual function protein, involved in regulation and coordination of cell–cell adhesion and gene transcrip ...
. Thus, E-cadherin forms adherens junctions that connect the actin cytoskeletons of neighbouring cells. Adherens junctions are the primary force-bearing junctions between epithelial cells and are fundamentally important for maintaining epithelial cell shape and for dynamic changes in shape during tissue development. How E-cadherin localizes to the boundary between apical and lateral membranes is not known, but polarized membranes are essential for maintaining E-cadherin at adherens junctions.


See also

*
Cell polarity Cell polarity refers to spatial differences in shape, structure, and function within a cell. Almost all cell types exhibit some form of polarity, which enables them to carry out specialized functions. Classical examples of polarized cells are de ...


References

{{DEFAULTSORT:Epithelial Polarity Cell biology