
In
mathematics, an endomorphism is a
morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphis ...
from a
mathematical object
A mathematical object is an abstract concept arising in mathematics.
In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical ...
to itself. An endomorphism that is also an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
is an
automorphism. For example, an endomorphism of a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
is a
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
, and an endomorphism of a
group is a
group homomorphism
In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that
: h(u*v) = h(u) \cdot h(v)
...
. In general, we can talk about endomorphisms in any
category
Category, plural categories, may refer to:
Philosophy and general uses
*Categorization, categories in cognitive science, information science and generally
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce) ...
. In the
category of sets
In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition ...
, endomorphisms are
functions from a
set ''S'' to itself.
In any category, the
composition of any two endomorphisms of is again an endomorphism of . It follows that the set of all endomorphisms of forms a
monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
Monoids ...
, the
full transformation monoid In algebra, a transformation semigroup (or composition semigroup) is a collection of transformations ( functions from a set to itself) that is closed under function composition. If it includes the identity function, it is a monoid, called a transfo ...
, and denoted (or to emphasize the category ).
Automorphisms
An
invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
endomorphism of is called an
automorphism. The set of all automorphisms is a
subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of with a
group structure, called the
automorphism group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is th ...
of and denoted . In the following diagram, the arrows denote implication:
Endomorphism rings
Any two endomorphisms of an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is com ...
, , can be added together by the rule . Under this addition, and with multiplication being defined as function composition, the endomorphisms of an abelian group form a
ring (the
endomorphism ring
In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in ...
). For example, the set of endomorphisms of is the ring of all
matrices with
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
entries. The endomorphisms of a vector space or
module also form a ring, as do the endomorphisms of any object in a
preadditive category. The endomorphisms of a nonabelian group generate an algebraic structure known as a
near-ring In mathematics, a near-ring (also near ring or nearring) is an algebraic structure similar to a ring but satisfying fewer axioms. Near-rings arise naturally from functions on groups.
Definition
A set ''N'' together with two binary operatio ...
. Every ring with one is the endomorphism ring of its
regular module
In mathematics, and in particular the theory of group representations, the regular representation of a group ''G'' is the linear representation afforded by the group action of ''G'' on itself by translation.
One distinguishes the left regular re ...
, and so is a subring of an endomorphism ring of an abelian group;
[Jacobson (2009), p. 162, Theorem 3.2.] however there are rings that are not the endomorphism ring of any abelian group.
Operator theory
In any
concrete category
In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects o ...
, especially for
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
s, endomorphisms are maps from a set into itself, and may be interpreted as
unary operator
In mathematics, an unary operation is an operation with only one operand, i.e. a single input. This is in contrast to binary operations, which use two operands. An example is any function , where is a set. The function is a unary operation ...
s on that set,
acting
Acting is an activity in which a story is told by means of its enactment by an actor or actress who adopts a character—in theatre, television, film, radio, or any other medium that makes use of the mimetic mode.
Acting involves a bro ...
on the elements, and allowing the notion of element
orbit
In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such a ...
s to be defined, etc.
Depending on the additional structure defined for the category at hand (
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
,
metric, ...), such operators can have properties like
continuity,
boundedness, and so on. More details should be found in the article about
operator theory
In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear oper ...
.
Endofunctions
An endofunction is a function whose
domain
Domain may refer to:
Mathematics
*Domain of a function, the set of input values for which the (total) function is defined
** Domain of definition of a partial function
**Natural domain of a partial function
**Domain of holomorphy of a function
*Do ...
is equal to its
codomain
In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either ...
. A
homomorphic endofunction is an endomorphism.
Let be an arbitrary set. Among endofunctions on one finds
permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or p ...
s of and constant functions associating to every in the same element in . Every permutation of has the codomain equal to its domain and is
bijective
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
and invertible. If has more than one element, a constant function on has an
image
An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensio ...
that is a proper subset of its codomain, and thus is not bijective (and hence not invertible). The function associating to each
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
the floor of has its image equal to its codomain and is not invertible.
Finite endofunctions are equivalent to
directed pseudoforest
In graph theory, a pseudoforest is an undirected graphThe kind of undirected graph considered here is often called a multigraph or pseudograph, to distinguish it from a simple graph. in which every connected component has at most one cycle. Th ...
s. For sets of size there are endofunctions on the set.
Particular examples of bijective endofunctions are the
involutions; i.e., the functions coinciding with their inverses.
See also
*
Adjoint endomorphism
*
Epimorphism
In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms ,
: g_1 \circ f = g_2 \circ f ...
(surjective homomorphism)
*
Frobenius endomorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphi ...
*
Monomorphism
In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y.
In the more general setting of category theory, a monomorphis ...
(injective homomorphism)
Notes
References
*
External links
* {{springer, title=Endomorphism, id=p/e035600
Morphisms