HOME

TheInfoList



OR:

In mathematics, an ellipse is a
plane curve In mathematics, a plane curve is a curve in a plane that may be either a Euclidean plane, an affine plane or a projective plane. The most frequently studied cases are smooth plane curves (including piecewise smooth plane curves), and algebraic ...
surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off- center, in geometry * Eccentricity (graph theory) of a ...
e, a number ranging from e = 0 (the limiting case of a circle) to e = 1 (the limiting case of infinite elongation, no longer an ellipse but a
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descri ...
). An ellipse has a simple
algebra Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
ic solution for its area, but only approximations for its
perimeter A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several pr ...
(also known as
circumference In geometry, the circumference (from Latin ''circumferens'', meaning "carrying around") is the perimeter of a circle or ellipse. That is, the circumference would be the arc length of the circle, as if it were opened up and straightened out t ...
), for which integration is required to obtain an exact solution. Analytically, the equation of a standard ellipse centered at the origin with width 2a and height 2b is: : \frac+\frac = 1 . Assuming a \ge b, the foci are (\pm c, 0) for c = \sqrt. The standard parametric equation is: : (x,y) = (a\cos(t),b\sin(t)) \quad \text \quad 0\leq t\leq 2\pi. Ellipses are the closed type of
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
: a plane curve tracing the intersection of a cone with a plane (see figure). Ellipses have many similarities with the other two forms of conic sections, parabolas and
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, c ...
s, both of which are
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gotthard album), 1999 * ''Open'' (Cowboy Junkies album), 2001 * ''Open'' (Y ...
and unbounded. An angled cross section of a
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infi ...
is also an ellipse. An ellipse may also be defined in terms of one focal point and a line outside the ellipse called the directrix: for all points on the ellipse, the ratio between the distance to the
focus Focus, or its plural form foci may refer to: Arts * Focus or Focus Festival, former name of the Adelaide Fringe arts festival in South Australia Film *''Focus'', a 1962 TV film starring James Whitmore * ''Focus'' (2001 film), a 2001 film based ...
and the distance to the directrix is a constant. This constant ratio is the above-mentioned eccentricity: : e = \frac = \sqrt. Ellipses are common in
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
,
astronomy Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
and
engineering Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
. For example, the
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such a ...
of each planet in the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
is approximately an ellipse with the Sun at one focus point (more precisely, the focus is the
barycenter In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important co ...
of the Sunplanet pair). The same is true for moons orbiting planets and all other systems of two astronomical bodies. The shapes of planets and stars are often well described by
ellipsoid An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;  that is, a surface that may be defined as the ...
s. A circle viewed from a side angle looks like an ellipse: that is, the ellipse is the image of a circle under
parallel Parallel is a geometric term of location which may refer to: Computing * Parallel algorithm * Parallel computing * Parallel metaheuristic * Parallel (software), a UNIX utility for running programs in parallel * Parallel Sysplex, a cluster of I ...
or
perspective projection Linear or point-projection perspective (from la, perspicere 'to see through') is one of two types of graphical projection perspective in the graphic arts; the other is parallel projection. Linear perspective is an approximate representation, ...
. The ellipse is also the simplest
Lissajous figure A Lissajous curve , also known as Lissajous figure or Bowditch curve , is the graph of a system of parametric equations : x=A\sin(at+\delta),\quad y=B\sin(bt), which describe the superposition of two perpendicular oscillations in x and y dire ...
formed when the horizontal and vertical motions are
sinusoid A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in ...
s with the same frequency: a similar effect leads to
elliptical polarization In electrodynamics, elliptical polarization is the polarization of electromagnetic radiation such that the tip of the electric field vector describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation. An ell ...
of light in
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultra ...
. The name, (, "omission"), was given by
Apollonius of Perga Apollonius of Perga ( grc-gre, Ἀπολλώνιος ὁ Περγαῖος, Apollṓnios ho Pergaîos; la, Apollonius Pergaeus; ) was an Ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the contribut ...
in his ''Conics''.


Definition as locus of points

An ellipse can be defined geometrically as a set or locus of points in the Euclidean plane: : Given two fixed points F_1, F_2 called the foci and a distance 2a which is greater than the distance between the foci, the ellipse is the set of points P such that the sum of the distances , PF_1, ,\ , PF_2, is equal to 2a:E = \left\\ . The midpoint C of the line segment joining the foci is called the ''center'' of the ellipse. The line through the foci is called the ''major axis'', and the line perpendicular to it through the center is the ''minor axis''. The major axis intersects the ellipse at two '' vertices'' V_1,V_2, which have distance a to the center. The distance c of the foci to the center is called the ''focal distance'' or linear eccentricity. The quotient e=\tfrac is the ''eccentricity''. The case F_1=F_2 yields a circle and is included as a special type of ellipse. The equation , PF_2, + , PF_1 , = 2a can be viewed in a different way (see figure): : If c_2 is the circle with center F_2 and radius 2a, then the distance of a point P to the circle c_2 equals the distance to the focus F_1: :: , PF_1, =, Pc_2, . c_2 is called the ''circular directrix'' (related to focus F_2) of the ellipse. This property should not be confused with the definition of an ellipse using a directrix line below. Using
Dandelin spheres In geometry, the Dandelin spheres are one or two spheres that are tangent both to a plane and to a cone that intersects the plane. The intersection of the cone and the plane is a conic section, and the point at which either sphere touches the plan ...
, one can prove that any section of a cone with a plane is an ellipse, assuming the plane does not contain the apex and has slope less than that of the lines on the cone.


In Cartesian coordinates


Standard equation

The standard form of an ellipse in Cartesian coordinates assumes that the origin is the center of the ellipse, the ''x''-axis is the major axis, and: : the foci are the points F_1 = (c,\, 0),\ F_2=(-c,\, 0), : the vertices are V_1 = (a,\, 0),\ V_2 = (-a,\, 0). For an arbitrary point (x,y) the distance to the focus (c,0) is \sqrt and to the other focus \sqrt. Hence the point (x,\, y) is on the ellipse whenever: :\sqrt + \sqrt = 2a\ . Removing the radicals by suitable squarings and using b^2 = a^2-c^2 (see diagram) produces the standard equation of the ellipse: :\frac + \frac = 1, or, solved for ''y:'' :y = \pm\frac\sqrt = \pm \sqrt. The width and height parameters a,\; b are called the
semi-major and semi-minor axes In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the long ...
. The top and bottom points V_3 = (0,\, b),\; V_4 = (0,\, -b) are the ''co-vertices''. The distances from a point (x,\, y) on the ellipse to the left and right foci are a + ex and a - ex. It follows from the equation that the ellipse is ''symmetric'' with respect to the coordinate axes and hence with respect to the origin.


Parameters


Principal axes

Throughout this article, the
semi-major and semi-minor axes In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the long ...
are denoted a and b, respectively, i.e. a \ge b > 0 \ . In principle, the canonical ellipse equation \tfrac + \tfrac = 1 may have a < b (and hence the ellipse would be taller than it is wide). This form can be converted to the standard form by transposing the variable names x and y and the parameter names a and b.


Linear eccentricity

This is the distance from the center to a focus: c = \sqrt.


Eccentricity

The eccentricity can be expressed as: : e = \frac = \sqrt, assuming a > b. An ellipse with equal axes (a = b) has zero eccentricity, and is a circle.


Semi-latus rectum

The length of the chord through one focus, perpendicular to the major axis, is called the ''latus rectum''. One half of it is the ''semi-latus rectum'' \ell. A calculation shows: : \ell = \fraca = a \left(1 - e^2\right). The semi-latus rectum \ell is equal to the
radius of curvature In differential geometry, the radius of curvature, , is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radiu ...
at the vertices (see section
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the can ...
).


Tangent

An arbitrary line g intersects an ellipse at 0, 1, or 2 points, respectively called an ''exterior line'', ''tangent'' and ''secant''. Through any point of an ellipse there is a unique tangent. The tangent at a point (x_1,\, y_1) of the ellipse \tfrac + \tfrac = 1 has the coordinate equation: :\fracx + \fracy = 1. A vector
parametric equation In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric ...
of the tangent is: : \vec x = \beginx_1 \\ y_1\end + s\begin \;\! -y_1 a^2 \\ \;\ \ \ x_1 b^2 \end\ with \ s \in \mathbb\ . Proof: Let (x_1,\, y_1) be a point on an ellipse and \vec = \beginx_1 \\ y_1\end + s\beginu \\ v\end be the equation of any line g containing (x_1,\, y_1). Inserting the line's equation into the ellipse equation and respecting \frac + \frac = 1 yields: : \frac + \frac = 1\ \quad\Longrightarrow\quad 2s\left(\frac + \frac\right) + s^2\left(\frac + \frac\right) = 0\ . There are then cases: # \fracu + \fracv = 0. Then line g and the ellipse have only point (x_1,\, y_1) in common, and g is a tangent. The tangent direction has perpendicular vector \begin\frac & \frac\end, so the tangent line has equation \fracx + \tfracy = k for some k. Because (x_1,\, y_1) is on the tangent and the ellipse, one obtains k = 1. # \fracu + \fracv \ne 0. Then line g has a second point in common with the ellipse, and is a secant. Using (1) one finds that \begin -y_1a^2 & x_1b^2 \end is a tangent vector at point (x_1,\, y_1), which proves the vector equation. If (x_1, y_1) and (u, v) are two points of the ellipse such that \frac + \tfrac = 0, then the points lie on two ''conjugate diameters'' (see
below Below may refer to: *Earth * Ground (disambiguation) * Soil * Floor * Bottom (disambiguation) * Less than *Temperatures below freezing * Hell or underworld People with the surname * Ernst von Below (1863–1955), German World War I general * Fr ...
). (If a = b, the ellipse is a circle and "conjugate" means "orthogonal".)


Shifted ellipse

If the standard ellipse is shifted to have center \left(x_\circ,\, y_\circ\right), its equation is : \frac + \frac = 1 \ . The axes are still parallel to the x- and y-axes.


General ellipse

In analytic geometry, the ellipse is defined as a
quadric In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections ( ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension ''D'') in a -dimensional space, and it is ...
: the set of points (X,\, Y) of the
Cartesian plane A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured i ...
that, in non-degenerate cases, satisfy the implicit equation : AX^2 + B X Y + C Y^2 + D X + E Y + F = 0 provided B^2 - 4AC < 0. To distinguish the
degenerate cases Degeneracy, degenerate, or degeneration may refer to: Arts and entertainment * ''Degenerate'' (album), a 2010 album by the British band Trigger the Bloodshed * Degenerate art, a term adopted in the 1920s by the Nazi Party in Germany to descr ...
from the non-degenerate case, let ''∆'' be the
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
:\Delta = \begin A & \fracB & \fracD \\ \fracB & C & \fracE \\ \fracD & \fracE & F \end = \left(AC - \frac\right) F + \frac - \frac - \frac. Then the ellipse is a non-degenerate real ellipse if and only if ''C∆'' < 0. If ''C∆'' > 0, we have an imaginary ellipse, and if ''∆'' = 0, we have a point ellipse.Lawrence, J. Dennis, ''A Catalog of Special Plane Curves'', Dover Publ., 1972. The general equation's coefficients can be obtained from known semi-major axis a, semi-minor axis b, center coordinates \left(x_\circ,\, y_\circ\right), and rotation angle \theta (the angle from the positive horizontal axis to the ellipse's major axis) using the formulae: :\begin A &= a^2 \sin^2\theta + b^2 \cos^2\theta \\ B &= 2\left(b^2 - a^2\right) \sin\theta \cos\theta \\ C &= a^2 \cos^2\theta + b^2 \sin^2\theta \\ D &= -2A x_\circ - B y_\circ \\ E &= - B x_\circ - 2C y_\circ \\ F &= A x_\circ^2 + B x_\circ y_\circ + C y_\circ^2 - a^2 b^2. \end These expressions can be derived from the canonical equation \tfrac + \tfrac = 1 by an affine transformation of the coordinates (x,\, y): :\begin x &= \left(X - x_\circ\right) \cos\theta + \left(Y - y_\circ\right) \sin\theta \\ y &= -\left(X - x_\circ\right) \sin\theta + \left(Y - y_\circ\right) \cos\theta. \end Conversely, the canonical form parameters can be obtained from the general form coefficients by the equations: :\begin a, b &= \frac \\ x_\circ &= \frac \\ pt y_\circ &= \frac \\ pt \theta &= \begin \arctan\left(\frac\left(C - A - \sqrt\right)\right) & \text B \ne 0 \\ 0 & \text B = 0,\ A < C \\ 90^\circ & \text B = 0,\ A > C \\ \end \end


Parametric representation


Standard parametric representation

Using
trigonometric function In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in ...
s, a parametric representation of the standard ellipse \tfrac+\tfrac = 1 is: : (x,\, y) = (a \cos t,\, b \sin t),\ 0 \le t < 2\pi\ . The parameter ''t'' (called the ''
eccentric anomaly In orbital mechanics, the eccentric anomaly is an angular parameter that defines the position of a body that is moving along an elliptic Kepler orbit. The eccentric anomaly is one of three angular parameters ("anomalies") that define a position a ...
'' in astronomy) is not the angle of (x(t),y(t)) with the ''x''-axis, but has a geometric meaning due to Philippe de La Hire (see '' Drawing ellipses'' below).


Rational representation

With the substitution u = \tan\left(\frac\right) and trigonometric formulae one obtains :\cos t = \frac\ ,\quad \sin t = \frac and the ''rational'' parametric equation of an ellipse : \begin x(u) &= a\frac \\ 0mu y(u) &= b\frac \end\;,\quad -\infty < u < \infty\;, which covers any point of the ellipse \tfrac + \tfrac = 1 except the left vertex (-a,\, 0). For u \in ,\, 1 this formula represents the right upper quarter of the ellipse moving counter-clockwise with increasing u. The left vertex is the limit \lim_ (x(u),\, y(u)) = (-a,\, 0)\;. Alternately, if the parameter :v/math> is considered to be a point on the
real projective line In geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not interse ...
\mathbf(\mathbf), then the corresponding rational parametrization is : :v\mapsto \left(a\frac, b\frac \right). Then :0\mapsto (-a,\, 0). Rational representations of conic sections are commonly used in computer-aided design (see Bezier curve).


Tangent slope as parameter

A parametric representation, which uses the slope m of the tangent at a point of the ellipse can be obtained from the derivative of the standard representation \vec x(t) = (a \cos t,\, b \sin t)^\mathsf: :\vec x'(t) = (-a\sin t,\, b\cos t)^\mathsf \quad \rightarrow \quad m = -\frac\cot t\quad \rightarrow \quad \cot t = -\frac. With help of
trigonometric formulae In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving ...
one obtains: :\cos t = \frac = \frac\ ,\quad\quad \sin t = \frac = \frac. Replacing \cos t and \sin t of the standard representation yields: : \vec c_\pm(m) = \left(-\frac,\;\frac\right),\, m \in \R. Here m is the slope of the tangent at the corresponding ellipse point, \vec c_+ is the upper and \vec c_- the lower half of the ellipse. The vertices(\pm a,\, 0), having vertical tangents, are not covered by the representation. The equation of the tangent at point \vec c_\pm(m) has the form y = mx + n. The still unknown n can be determined by inserting the coordinates of the corresponding ellipse point \vec c_\pm(m): : y = mx \pm\sqrt\; . This description of the tangents of an ellipse is an essential tool for the determination of the orthoptic of an ellipse. The orthoptic article contains another proof, without differential calculus and trigonometric formulae.


General ellipse

Another definition of an ellipse uses
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generall ...
s: : Any ''ellipse'' is an affine image of the unit circle with equation x^2 + y^2 = 1. ;Parametric representation An affine transformation of the Euclidean plane has the form \vec x \mapsto \vec f\!_0 + A\vec x, where A is a regular
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
(with non-zero
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
) and \vec f\!_0 is an arbitrary vector. If \vec f\!_1, \vec f\!_2 are the column vectors of the matrix A, the unit circle (\cos(t), \sin(t)), 0 \leq t \leq 2\pi, is mapped onto the ellipse: : \vec x = \vec p(t) = \vec f\!_0 + \vec f\!_1 \cos t + \vec f\!_2 \sin t \ . Here \vec f\!_0 is the center and \vec f\!_1,\; \vec f\!_2 are the directions of two conjugate diameters, in general not perpendicular. ;Vertices The four vertices of the ellipse are \vec p(t_0),\;\vec p\left(t_0 \pm \tfrac\right),\; \vec p\left(t_0 + \pi\right), for a parameter t = t_0 defined by: : \cot (2t_0) = \frac. (If \vec f\!_1 \cdot \vec f\!_2 = 0, then t_0 = 0.) This is derived as follows. The tangent vector at point \vec p(t) is: : \vec p\,'(t) = -\vec f\!_1\sin t + \vec f\!_2\cos t \ . At a vertex parameter t = t_0, the tangent is perpendicular to the major/minor axes, so: : 0 = \vec p'(t) \cdot \left(\vec p(t) -\vec f\!_0\right) = \left(-\vec f\!_1\sin t + \vec f\!_2\cos t\right) \cdot \left(\vec f\!_1 \cos t + \vec f\!_2 \sin t\right). Expanding and applying the identities \; \cos^2 t -\sin^2 t=\cos 2t,\ \ 2\sin t \cos t = \sin 2t\; gives the equation for t = t_0\; . ;Area From Apollonios theorem (see below) one obtains:
The area of an ellipse \;\vec x = \vec f_0 +\vec f_1 \cos t +\vec f_2 \sin t\; is :A=\pi, \det(\vec f_1, \vec f_2), \ . ;Semiaxes With the abbreviations \; M=\vec f_1^2+\vec f_2^2, \ N = \left, \det(\vec f_1,\vec f_2)\ the statements of Apollonios's theorem can be written as: :a^2+b^2=M, \quad ab=N \ . Solving this nonlinear system for a,b yields the semiaxes: :a=\frac(\sqrt+\sqrt) :b=\frac(\sqrt-\sqrt)\ . ;Implicit representation Solving the parametric representation for \; \cos t,\sin t\; by
Cramer's rule In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants ...
and using \;\cos^2t+\sin^2t -1=0\; , one obtains the implicit representation :\det(\vec x\!-\!\vec f\!_0,\vec f\!_2)^2+\det(\vec f\!_1,\vec x\!-\!\vec f\!_0)^2-\det(\vec f\!_1,\vec f\!_2)^2=0. Conversely: If the equation :x^2+2cxy+d^2y^2-e^2=0\ , with \; d^2-c^2 >0 \; , of an ellipse centered at the origin is given, then the two vectors :\vec f_1=,\quad \vec f_2=\frac\ point to two conjugate points and the tools developed above are applicable. ''Example'': For the ellipse with equation \;x^2+2xy+3y^2-1=0\; the vectors are :\vec f_1=,\quad \vec f_2=\frac . ;Rotated Standard ellipse For \vec f_0= ,\;\vec f_1= a ,\;\vec f_2= b one obtains a parametric representation of the standard ellipse rotated by angle \theta: :x=x_\theta(t)=a\cos\theta\cos t-b\sin\theta\sin t\ , :y=y_\theta(t)=a\sin\theta\cos t+b\cos\theta\sin t\ . ;Ellipse in space The definition of an ellipse in this section gives a parametric representation of an arbitrary ellipse, even in space, if one allows \vec f\!_0, \vec f\!_1, \vec f\!_2 to be vectors in space.


Polar forms


Polar form relative to center

In
polar coordinates In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to t ...
, with the origin at the center of the ellipse and with the angular coordinate \theta measured from the major axis, the ellipse's equation is : r(\theta) = \frac=\frac where e is the eccentricity, not Euler's number


Polar form relative to focus

If instead we use polar coordinates with the origin at one focus, with the angular coordinate \theta = 0 still measured from the major axis, the ellipse's equation is : r(\theta)=\frac where the sign in the denominator is negative if the reference direction \theta = 0 points towards the center (as illustrated on the right), and positive if that direction points away from the center. In the slightly more general case of an ellipse with one focus at the origin and the other focus at angular coordinate \phi, the polar form is :r(\theta)=\frac. The angle \theta in these formulas is called the
true anomaly In celestial mechani