Elementary Divisors
   HOME

TheInfoList



OR:

In
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, the elementary divisors of a module over a
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain (that is, a non-zero commutative ring without nonzero zero divisors) in which every ideal is principal (that is, is formed by the multiples of a single element). Some author ...
(PID) occur in one form of the
structure theorem for finitely generated modules over a principal ideal domain In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finite ...
. If R is a PID and M a finitely generated R-module, then ''M'' is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to a finite
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
of the form ::M\cong R^r\oplus \bigoplus_^l R/(q_i) \qquad\textr,l\geq0, where the (q_i) are nonzero
primary ideal In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y'n'' is also an element of ''Q'', for some ''n'' > 0. ...
s. The list of primary ideals is unique
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...
order (but a given ideal may be present more than once, so the list represents a
multiset In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the ''multiplicity'' of ...
of primary ideals); the elements q_i are unique only up to
associatedness In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. ...
, and are called the ''elementary divisors''. Note that in a PID, the nonzero primary ideals are powers of prime ideals, so the elementary divisors can be written as powers q_i = p_i^ of
irreducible element In algebra, an irreducible element of an integral domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. The irreducible elements are the terminal elements of a factor ...
s. The nonnegative
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
r is called the ''free rank'' or ''Betti number'' of the module M. The module is determined up to isomorphism by specifying its free rank , and for class of associated irreducible elements and each positive integer the number of times that occurs among the elementary divisors. The elementary divisors can be obtained from the list of
invariant factors The invariant factors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If R is a PID and M a finitely generated R-module, then :M\cong R^r\o ...
of the module by decomposing each of them as far as possible into pairwise relatively prime (non-
unit Unit may refer to: General measurement * Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law **International System of Units (SI), modern form of the metric system **English units, histo ...
) factors, which will be powers of irreducible elements. This decomposition corresponds to maximally decomposing each
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since t ...
corresponding to an invariant factor by using the
Chinese remainder theorem In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
for ''R''. Conversely, knowing the multiset of elementary divisors, the invariant factors can be found, starting from the final one (which is a multiple of all others), as follows. For each irreducible element such that some power occurs in , take the highest such power, removing it from , and multiply these powers together for all (classes of associated) to give the final invariant factor; as long as is
non-empty In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, whil ...
, repeat to find the invariant factors before it.


See also

*
Invariant factors The invariant factors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If R is a PID and M a finitely generated R-module, then :M\cong R^r\o ...
*
Smith normal form In mathematics, the Smith normal form (sometimes abbreviated SNF) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can ...


References

* Chap.11, p.182. * Chap. III.7, p.153 of Module theory {{linear-algebra-stub