Electron Crystallography
   HOME

TheInfoList



OR:

Electron crystallography is a subset of methods in
electron diffraction Electron diffraction is a generic term for phenomena associated with changes in the direction of electron beams due to elastic interactions with atoms. It occurs due to elastic scattering, when there is no change in the energy of the electrons. ...
focusing upon detailed determination of the positions of atoms in solids using a
transmission electron microscope Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a gr ...
(TEM). It can involve the use of high-resolution transmission electron microscopy images,
electron diffraction Electron diffraction is a generic term for phenomena associated with changes in the direction of electron beams due to elastic interactions with atoms. It occurs due to elastic scattering, when there is no change in the energy of the electrons. ...
patterns including convergent-beam electron diffraction or combinations of these. It has been successful in determining some bulk structures, and also surface structures. Two related methods are
low-energy electron diffraction Low-energy electron diffraction (LEED) is a technique for the determination of the surface structure of single crystal, single-crystalline materials by bombardment with a collimated beam of low-energy electrons (30–200 eV) and observation o ...
which has solved the structure of many surfaces, and reflection high-energy electron diffraction which is used to monitor surfaces often during growth. The technique date back to soon after the discovery of electron diffraction in 1927-28, and was used in many early works. However, for many years quantitative electron crystallography was not used, instead the diffraction information was combined qualitatively with imaging results. A number of advances from the 1950s in particular laid the foundation for more quantitative work, ranging from accurate methods to perform forward calculations to methods to invert to maps of the atomic structure. With the improvement of the imaging capabilities of electron microscopes crystallographic data is now commonly obtained by combining images with electron diffraction information, or in some cases by collecting three dimensional electron diffraction data by a number of different approaches.


History

The general approach dates back to the work in 1924 of
Louis de Broglie Louis Victor Pierre Raymond, 7th Duc de Broglie (15 August 1892 – 19 March 1987) was a French theoretical physicist and aristocrat known for his contributions to quantum theory. In his 1924 PhD thesis, he postulated the wave nature of elec ...
in his PhD thesis ''Recherches sur la théorie des quanta'' where he introduced the concept of electrons as
matter waves Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave-like behavior. For example, a beam of electrons can be diffract ...
. The wave nature was experimentally confirmed for electron beams in the work of two groups, the first the
Davisson–Germer experiment The Davisson–Germer experiment was a 1923–1927 experiment by Clinton Davisson and Lester Germer at Bell Labs, Western Electric (later Bell Labs), in which electrons, scattered by the surface of a crystal of nickel metal, displayed a diffrac ...
, the other by
George Paget Thomson Sir George Paget Thomson (; 3 May 1892 – 10 September 1975) was an English physicist who shared the 1937 Nobel Prize in Physics with Clinton Davisson “for their experimental discovery of the diffraction of electrons by crystals”. Educa ...
and Alexander Reid. Alexander Reid, who was Thomson's graduate student, performed the first experiments, but he died soon after in a motorcycle accident. These experiments were rapidly followed by the first non-relativistic diffraction model for electrons by
Hans Bethe Hans Albrecht Eduard Bethe (; ; July 2, 1906 – March 6, 2005) was a German-American physicist who made major contributions to nuclear physics, astrophysics, quantum electrodynamics and solid-state physics, and received the Nobel Prize in Physi ...
based upon the Schrödinger equation, which is very close to how electron diffraction is now described. Significantly,
Clinton Davisson Clinton Joseph Davisson (October 22, 1881 – February 1, 1958) was an American physicist who shared the 1937 Nobel Prize in Physics with George Paget Thomson "for their experimental discovery of the diffraction of electrons by crystals". Earl ...
and
Lester Germer Lester Halbert Germer (October 10, 1896 – October 3, 1971) was an American physicist. With Clinton Davisson, he proved the wave-particle duality of matter in the Davisson–Germer experiment, which was important to the development of the e ...
noticed that their results could not be interpreted using a Bragg's law approach as the positions were systematically different; the approach of
Hans Bethe Hans Albrecht Eduard Bethe (; ; July 2, 1906 – March 6, 2005) was a German-American physicist who made major contributions to nuclear physics, astrophysics, quantum electrodynamics and solid-state physics, and received the Nobel Prize in Physi ...
which includes both multiple scattering and the refraction due to the average potential yielded more accurate results. Very quickly there were multiple advances, for instance Seishi Kikuchi's observations of lines that can be used for crystallographic indexing due to combined elastic and inelastic scattering,
gas electron diffraction Gas electron diffraction (GED) is one of the applications of electron diffraction techniques. The target of this method is the determination of the structure of gaseous molecules, i.e., the geometrical arrangement of the atoms from which a molec ...
developed by Herman Mark and Raymond Weil, diffraction in liquids by Louis Maxwell, and the first electron microscopes developed by
Max Knoll Max Knoll (17 July 1897 – 6 November 1969) was a German electrical engineer and co-inventor of the electron microscope. Knoll was born in Wiesbaden and studied at the University of Munich and at the Technischen Hochschulen in Munich and ...
and
Ernst Ruska Ernst August Friedrich Ruska (; 25 December 1906 – 27 May 1988) was a German physicist who won the Nobel Prize in Physics in 1986 for his work in electron optics, including the design of the first electron microscope. Life and career Ernst R ...
. Despite early successes such as the determination of the positions of hydrogen atoms in NH4Cl crystals by W. E. Laschkarew and I. D. Usykin in 1933, boric acid by John M. Cowley in 1953 and orthoboric acid by William Houlder Zachariasen in 1954, electron diffraction for many years was a qualitative technique used to check samples within electron microscopes. John M Cowley explains in a 1968 paper:
''Thus was founded the belief, amounting in some cases almost to an article of faith, and persisting even to the present day, that it is impossible to interpret the intensities of electron diffraction patterns to gain structural information.''
This has slowly changed. One key step was the development in 1936 by
Walther Kossel Walther Ludwig Julius Kossel (; 4 January 1888 – 22 May 1956) was a German chemist and physicist known for his theory of the chemical bond (ionic bond/octet rule), Sommerfeld–Kossel displacement law of atomic spectra, the Kossel–Stranski ...
and Gottfried Möllenstedt of convergent beam electron diffraction (CBED), This approach was extended by Peter Goodman and Gunter Lehmpfuhl, then mainly by the groups of John Steeds and Michiyoshi Tanaka who showed how to use CBED patterns to determine point groups and
space groups In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of the pattern that ...
. This was combined with other
transmission electron microscopy Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a g ...
approaches, typically where both local
microstructure Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. The microstructure of a material (such as metals, polymer ...
and atomic structure was of importance. A second key set of work was that by the group of Boris Vainshtein who demonstrated solving the structure of many different materials such as clays and micas using powder diffraction patterns, a success attributed to the samples being relatively thin. (Since the advent of precession electron diffraction it has become clear that averaging over many different electron beam directions and thicknesses significantly reduces dynamical diffraction effects,Own, C. S.: PhD thesis, System Design and Verification of the Precession Electron Diffraction Technique, Northwestern University, 2005,http://www.numis.northwestern.edu/Research/Current/precession.shtml so was probably also important.) More complete crystallographic analysis of intensity data was slow to develop. One of the key steps was the demonstration in 1976 by Douglas L. Dorset and Herbert A. Hauptman that conventional direct methods for
x-ray crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
could be used. Another was the demonstration in 1986 that a
Patterson function The Patterson function is used to solve the phase problem in X-ray crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam ...
could be powerful in the seminal solution of the silicon (111) 7x7 reconstructed surface by Kunio Takanayagi using
ultra-high vacuum Ultra-high vacuum (often spelled ultrahigh in American English, UHV) is the vacuum regime characterised by pressures lower than about . UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the mean free path of ...
electron diffraction Electron diffraction is a generic term for phenomena associated with changes in the direction of electron beams due to elastic interactions with atoms. It occurs due to elastic scattering, when there is no change in the energy of the electrons. ...
. More complete analyses were the demonstration that classical inversion methods could be used for surfaces in 1997 by Dorset and Laurence D. Marks, and in 1998 the work by Jon Gjønnes who combined three-dimensional electron diffraction with precession electron diffraction and direct methods to solve an intermetallic, also using dynamical refinements. At the same time as approaches to invert diffraction data using electrons were established, the resolution of electron microscopes became good enough that images could be combined with diffraction information. At first resolution was poor, with in 1956 James Menter publishing the first electron microscope images showing the lattice structure of a material at 1.2nm resolution. In 1968
Aaron Klug Sir Aaron Klug (11 August 1926 – 20 November 2018) was a British biophysicist and chemist. He was a winner of the 1982 Nobel Prize in Chemistry for his development of crystallographic electron microscopy and his structural elucidation of biol ...
and David DeRosier used electron microscopy to visualise the structure of the tail of
bacteriophage A bacteriophage (), also known informally as a phage (), is a virus that infects and replicates within bacteria. The term is derived . Bacteriophages are composed of proteins that Capsid, encapsulate a DNA or RNA genome, and may have structu ...
T4, a common virus, a key step in the use of electrons for macromolecular structure determination. The first quantitative matching of atomic scale images and dynamical simulations was published in 1972 by J. G. Allpress, E. A. Hewat, A. F. Moodie and J. V. Sanders. In the early 1980s the resolution of electron microscopes was now sufficient to resolve the atomic structure of materials, for instance with the 600 kV instrument led by Vernon Cosslett, so combinations of high-resolution transmission electron microscopy and diffraction became standard across many areas of science. Most of the research published using these approaches is described as electron microscopy, without the addition of the term electron crystallography.


Comparison with X-ray crystallography

It can complement
X-ray crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
for studies of very small crystals (<0.1 micrometers), both inorganic, organic, and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s, such as
membrane protein Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane ...
s, that cannot easily form the large 3-dimensional
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
s required for that process. Protein structures are usually determined from either 2-dimensional crystals (sheets or
helices A helix (; ) is a shape like a cylindrical coil spring or the thread of a machine screw. It is a type of smoothness (mathematics), smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as ...
),
polyhedron In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer ...
s such as viral capsids, or dispersed individual proteins. Electrons can be used in these situations, whereas
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s cannot, because electrons interact more strongly with atoms than X-rays do. Thus, X-rays will travel through a thin 2-dimensional crystal without diffracting significantly, whereas electrons can be used to form an image. Conversely, the strong interaction between electrons and protons makes thick (e.g. 3-dimensional > 1 micrometer) crystals impervious to electrons, which only penetrate short distances. One of the main difficulties in X-ray crystallography is determining
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematica ...
s in the diffraction pattern. Because of the complexity of X-ray
lenses A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
, it is difficult to form an image of the crystal being diffracted, and hence phase information is lost. Fortunately, electron microscopes can resolve atomic structure in real space and the crystallographic
structure factor In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation ...
phase information can be experimentally determined from an image's Fourier transform. The Fourier transform of an atomic resolution image is similar, but different, to a diffraction pattern—with reciprocal lattice spots reflecting the symmetry and spacing of a crystal.
Aaron Klug Sir Aaron Klug (11 August 1926 – 20 November 2018) was a British biophysicist and chemist. He was a winner of the 1982 Nobel Prize in Chemistry for his development of crystallographic electron microscopy and his structural elucidation of biol ...
was the first to realize that the phase information could be read out directly from the Fourier transform of an electron microscopy image that had been scanned into a computer, already in 1968. For this, and his studies on virus structures and transfer-RNA, Klug received the Nobel Prize for chemistry in 1982.


Radiation damage

A common problem to X-ray crystallography and electron crystallography is radiation damage, by which especially organic molecules and proteins are damaged as they are being imaged, limiting the resolution that can be obtained. This is especially troublesome in the setting of electron crystallography, where that radiation damage is focused on far fewer atoms. One technique used to limit radiation damage is electron cryomicroscopy, in which the samples undergo cryofixation and imaging takes place at
liquid nitrogen Liquid nitrogen (LN2) is nitrogen in a liquid state at cryogenics, low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, mobile liquid whose vis ...
or even
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
temperatures. Because of this problem, X-ray crystallography has been much more successful in determining the structure of proteins that are especially vulnerable to radiation damage. Radiation damage was recently investigated using MicroED of thin 3D crystals in a frozen hydrated state.


Protein structures determined by electron crystallography

The first electron crystallographic protein structure to achieve atomic resolution was
bacteriorhodopsin Bacteriorhodopsin (Bop) is a protein used by Archaea, most notably by Haloarchaea, a class of the Euryarchaeota. It acts as a proton pump; that is, it captures light energy and uses it to move protons across the membrane out of the cell. The res ...
, determined by Richard Henderson and coworkers at the Medical Research Council
Laboratory of Molecular Biology The Medical Research Council (MRC) Laboratory of Molecular Biology (LMB) is a research institute in Cambridge, England, involved in the revolution in molecular biology which occurred in the 1950–60s. Since then it has remained a major medical r ...
in 1990. However, already in 1975 Unwin and Henderson had determined the first membrane protein structure at intermediate resolution (7 Ångström), showing for the first time the internal structure of a membrane protein, with its alpha-helices standing perpendicular to the plane of the membrane. Since then, several other high-resolution structures have been determined by electron crystallography, including the
light-harvesting complex In biology, a light-harvesting complex or LHC is an aggregate consisting of proteins bound with chromophores (chlorophylls and carotenoids) that play a key role in photosynthesis. LHCs are arrayed around photosynthetic reaction centers in both pl ...
, the
nicotinic acetylcholine receptor Nicotinic acetylcholine receptors, or nAChRs, are Receptor (biochemistry), receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the c ...
, and the bacterial
flagellum A flagellum (; : flagella) (Latin for 'whip' or 'scourge') is a hair-like appendage that protrudes from certain plant and animal sperm cells, from fungal spores ( zoospores), and from a wide range of microorganisms to provide motility. Many pr ...
. The highest resolution protein structure solved by electron crystallography of 2D crystals is that of the water channel
aquaporin Aquaporins, also called water channels, are channel proteins from a larger family of major intrinsic proteins that form pores in the membrane of biological cells, mainly facilitating transport of water between cells. The cell membranes of ...
-0. In 2012, Jan Pieter Abrahams and coworkers extended electron crystallography to 3D protein nanocrystals by rotation electron diffraction (RED).


Application to inorganic materials

Electron crystallographic studies on inorganic crystals using high-resolution electron microscopy (HREM) images were first performed by
Aaron Klug Sir Aaron Klug (11 August 1926 – 20 November 2018) was a British biophysicist and chemist. He was a winner of the 1982 Nobel Prize in Chemistry for his development of crystallographic electron microscopy and his structural elucidation of biol ...
in 1978 and by Sven Hovmöller and coworkers in 1984. HREM images were used because they allow to select (by computer software) only the very thin regions close to the edge of the crystal for structure analysis (see also crystallographic image processing). This is of crucial importance since in the thicker parts of the crystal the exit-wave function (which carries the information about the intensity and position of the projected atom columns) is no longer linearly related to the projected crystal structure. Moreover, not only do the HREM images change their appearance with increasing crystal thickness, they are also very sensitive to the chosen setting of the defocus Δf of the objective lens (see the HREM images of
GaN The word Gan or the initials GAN may refer to: Places * Gan, a component of Hebrew placenames literally meaning "garden" China * Gan River (Jiangxi) * Gan River (Inner Mongolia), * Gan County, in Jiangxi province * Gansu, abbreviated '' ...
for example). To cope with this complexity methods based upon the Cowley-Moodie
multislice The multislice algorithm is a method for the simulation of the elastic scattering of an electron beam with matter, including all multiple scattering effects. The method is reviewed in the book by John M. Cowley, and also the work by Ishizuka. The a ...
algorithm and non-linear imaging theory have been developed to simulate images; this only became possible once the FFT method was developed. In addition to electron microscopy images, it is also possible to use electron diffraction (ED) patterns for crystal structure determination. The utmost care must be taken to record such ED patterns from the thinnest areas in order to keep most of the structure related intensity differences between the reflections (quasi-kinematical diffraction conditions). Just as with X-ray diffraction patterns, the important crystallographic structure factor phases are lost in electron diffraction patterns and must be uncovered by special crystallographic methods such as direct methods, maximum likelihood or (more recently) by the charge-flipping method. On the other hand, ED patterns of inorganic crystals have often a high resolution (= interplanar spacings with high
Miller indices Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices. In particular, a family of lattice planes of a given (direct) Bravais lattice is determined by three integers ''h'', ''k'', and '' ...
) much below 1 Ångström. This is comparable to the point resolution of the best electron microscopes. Under favourable conditions it is possible to use ED patterns from a single orientation to determine the complete crystal structure. Alternatively a hybrid approach can be used which uses HRTEM images for solving and intensities from ED for refining the crystal structure. Recent progress for structure analysis by ED was made by introducing the Vincent-Midgley precession technique for recording electron diffraction patterns. The thereby obtained intensities are usually much closer to the kinematical intensities, so that even structures can be determined that are out of range when processing conventional (selected area) electron diffraction data. Crystal structures determined via electron crystallography can be checked for their quality by using first-principles calculations within
density functional theory Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
(DFT). This approach has been used to assist in solving surface structures and for the validation of several metal-rich structures which were only accessible by HRTEM and ED, respectively. Recently, two very complicated
zeolite Zeolites are a group of several microporous, crystalline aluminosilicate minerals commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a meta ...
structures have been determined by electron crystallography combined with X-ray powder diffraction. These are more complex than the most complex zeolite structures determined by X-ray crystallography.


References


Further reading

*Zou, XD, Hovmöller, S. and Oleynikov, P. "Electron Crystallography - Electron microscopy and Electron Diffraction". IUCr Texts on Crystallography 16, Oxford university press 2011. http://ukcatalogue.oup.com/product/9780199580200.do * * * T.E. Weirich, X.D. Zou & J.L. Lábár (2006). ''Electron Crystallography: Novel Approaches for Structure Determination of Nanosized Materials''. Springer Netherlands,


External links


Interview with Aaron Klug Nobel Laureate for work on crystallograph electron microscopy
Freeview video by the Vega Science Trust. * {{DEFAULTSORT:Electron Crystallography Crystallography Protein structure