HOME

TheInfoList



OR:

upright=1.3, An electroactive polymer (EAP) is a
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
that exhibits a change in size or shape when stimulated by an
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
. The most common applications of this type of material are in
actuator An actuator is a machine element, component of a machine that produces force, torque, or Displacement (geometry), displacement, when an electrical, Pneumatics, pneumatic or Hydraulic fluid, hydraulic input is supplied to it in a system (called an ...
s and
sensor A sensor is often defined as a device that receives and responds to a signal or stimulus. The stimulus is the quantity, property, or condition that is sensed and converted into electrical signal. In the broadest definition, a sensor is a devi ...
s. A typical characteristic property of an EAP is that they will undergo a large amount of deformation while sustaining large
force In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
s. The majority of historic actuators are made of
ceramic A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
materials. While these materials are able to withstand large forces, they commonly will only deform a fraction of a percent. In the late 1990s, it has been demonstrated that some EAPs can exhibit up to a 380% strain, which is much more than any ceramic actuator. One of the most common applications for EAPs is in the field of
robotics Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots. Within mechanical engineering, robotics is the design and construction of the physical structures of robots, while in computer s ...
in the development of artificial muscles; thus, an electroactive polymer is often referred to as an
artificial muscle Artificial muscles, also known as muscle-like actuators, are materials or devices that mimic natural muscle and can change their stiffness, reversibly contract, expand, or rotate within one component due to an external stimulus (such as voltage, c ...
.


History

The field of EAPs emerged back in 1880, when
Wilhelm Röntgen Wilhelm Conrad Röntgen (; 27 March 1845 – 10 February 1923), sometimes Transliteration, transliterated as Roentgen ( ), was a German physicist who produced and detected electromagnetic radiation in a wavelength range known as X-rays. As ...
designed an experiment in which he tested the effect of an electrostatic field on the mechanical properties of a stripe of natural rubber. The rubber stripe was fixed at one end and was attached to a
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
at the other. Electric charges were then sprayed onto the rubber, and it was observed that the length changed. It was in 1925 that the first
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
polymer was discovered (
Electret An electret (formed as a portmanteau of ''electr-'' from "electricity" and ''-et'' from "magnet") is a dielectric material that has a quasi-permanent electrical polarisation. An electret has internal and external electric fields, and is the ele ...
). Electret was formed by combining
carnauba wax Carnauba (; ), also called Brazil wax and palm wax, is a wax of the leaves of the carnauba palm '' Copernicia prunifera'' (synonym: ''Copernicia cerifera''), a plant native to and grown only in the northeastern Brazilian states of Ceará, Piau ...
,
rosin Rosin (), also known as colophony or Greek pitch (), is a resinous material obtained from pine trees and other plants, mostly conifers. The primary components of rosin are diterpenoids, i.e., C20 carboxylic acids. Rosin consists mainly of r ...
and
beeswax Bee hive wax complex Beeswax (also known as cera alba) is a natural wax produced by honey bees of the genus ''Apis''. The wax is formed into scales by eight wax-producing glands in the abdominal segments of worker bees, which discard it in o ...
, and then cooling the solution while it is subject to an applied DC electrical bias. The mixture would then solidify into a polymeric material that exhibited a
piezoelectric effect Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
. Polymers that respond to environmental conditions, other than an applied
electric current An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
, have also been a large part of this area of study. In 1949 Katchalsky ''et al.'' demonstrated that when
collagen Collagen () is the main structural protein in the extracellular matrix of the connective tissues of many animals. It is the most abundant protein in mammals, making up 25% to 35% of protein content. Amino acids are bound together to form a trip ...
filaments are dipped in
acid An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
or
alkali In chemistry, an alkali (; from the Arabic word , ) is a basic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0. The a ...
solutions, they would respond with a change in
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
. The collagen filaments were found to expand in an
acidic An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen cation, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid. The first category of acids are the ...
solution and contract in an
alkali In chemistry, an alkali (; from the Arabic word , ) is a basic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0. The a ...
solution. Although other stimuli (such as pH) have been investigated, due to its ease and practicality most research has been devoted to developing polymers that respond to electrical stimuli in order to mimic biological systems. The next major breakthrough in EAPs took place in the late 1960s. In 1969 Kawai demonstrated that
polyvinylidene fluoride Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly non-reactive thermoplastic fluoropolymer produced by the polymerization of vinylidene difluoride. Its chemical formula is (C2H2F2)''n''. PVDF is a specialty plastic use ...
(PVDF) exhibits a large piezoelectric effect. This sparked research interest in developing other polymers that would show a similar effect. In 1977 the first electrically conducting polymers were discovered by
Hideki Shirakawa is a Japanese chemist, engineer, and Professor Emeritus at the University of Tsukuba and Zhejiang University. He is best known for his discovery of conductive polymers. He was co-recipient of the 2000 Nobel Prize in Chemistry jointly with Alan ...
''et al.'' Shirakawa, along with Alan MacDiarmid and
Alan Heeger Alan Jay Heeger (born January 22, 1936) is an American physicist, academic and Nobel Prize laureate in chemistry. Heegar was elected as a member into the National Academy of Engineering in 2002 for co-founding the field of conducting polymers ...
, demonstrated that
polyacetylene Polyacetylene (IUPAC name: polyethyne) usually refers to an organic polymer with the repeating unit . The name refers to its conceptual construction from polymerization of acetylene to give a chain with repeating olefin groups. This compound is ...
was electrically conductive, and that by doping it with
iodine Iodine is a chemical element; it has symbol I and atomic number 53. The heaviest of the stable halogens, it exists at standard conditions as a semi-lustrous, non-metallic solid that melts to form a deep violet liquid at , and boils to a vi ...
vapor, they could enhance its conductivity by 8 orders of magnitude. Thus the conductance was close to that of a metal. By the late 1980s a number of other polymers had been shown to exhibit a
piezoelectric effect Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
or were demonstrated to be conductive. In the early 1990s, ionic polymer-metal composites (IPMCs) were developed and shown to exhibit electroactive properties far superior to previous EAPs. The major advantage of IPMCs was that they were able to show activation (deformation) at
voltage Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
s as low as 1 or 2
volt The volt (symbol: V) is the unit of electric potential, Voltage#Galvani potential vs. electrochemical potential, electric potential difference (voltage), and electromotive force in the International System of Units, International System of Uni ...
s. This is orders of magnitude less than any previous EAP. Not only was the
activation energy In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. The activation energy (''E''a) of a reaction is measured in kilojoules per mole (k ...
for these materials much lower, but they could also undergo much larger deformations. IPMCs were shown to exhibit anywhere up to 380% strain, orders of magnitude larger than previously developed EAPs. In 1999, Yoseph Bar-Cohen proposed the Armwrestling Match of EAP Robotic Arm Against Human Challenge. This was a challenge in which research groups around the world competed to design a robotic arm consisting of EAP muscles that could defeat a human in an
arm wrestling Arm wrestling (also spelled "armwrestling") is a sport in which two participants, facing each other with their bent elbows placed on a flat surface (usually a table) and hands firmly gripped, each attempt to "pin" their opponent's hand by forcing ...
match. The first challenge was held at the Electroactive Polymer Actuators and Devices Conference in 2005. Another major milestone of the field is that the first commercially developed device including EAPs as an artificial muscle was produced in 2002 by Eamex in Japan. This device was a fish that was able to swim on its own, moving its tail using an EAP muscle. But the progress in practical development has not been satisfactory.
DARPA The Defense Advanced Research Projects Agency (DARPA) is a research and development agency of the United States Department of Defense responsible for the development of emerging technologies for use by the military. Originally known as the Adva ...
-funded research in the 1990s at
SRI International SRI International (SRI) is a nonprofit organization, nonprofit scientific research, scientific research institute and organization headquartered in Menlo Park, California, United States. It was established in 1946 by trustees of Stanford Univer ...
and led by Ron Pelrine developed an electroactive polymer using silicone and acrylic polymers; the technology was spun off into the company
Artificial Muscle Artificial muscles, also known as muscle-like actuators, are materials or devices that mimic natural muscle and can change their stiffness, reversibly contract, expand, or rotate within one component due to an external stimulus (such as voltage, c ...
in 2003, with industrial production beginning in 2008. In 2010, Artificial Muscle became a subsidiary of Bayer MaterialScience.


Types

EAPs can have several configurations, but are generally divided in two principal classes: Dielectric and Ionic.


Dielectric

Dielectric EAPs are materials in which actuation is caused by
electrostatic Electrostatics is a branch of physics that studies slow-moving or stationary electric charges. Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word (), mean ...
forces between two electrodes which squeeze the polymer. Dielectric elastomers are capable of very high strains and are fundamentally a capacitor that changes its capacitance when a voltage is applied by allowing the polymer to compress in thickness and expand in area due to the electric field. This type of EAP typically requires a large actuation voltage to produce high electric fields (hundreds to thousands of
volt The volt (symbol: V) is the unit of electric potential, Voltage#Galvani potential vs. electrochemical potential, electric potential difference (voltage), and electromotive force in the International System of Units, International System of Uni ...
s), but very low
electrical Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
power Power may refer to: Common meanings * Power (physics), meaning "rate of doing work" ** Engine power, the power put out by an engine ** Electric power, a type of energy * Power (social and political), the ability to influence people or events Math ...
consumption. Dielectric EAPs require no power to keep the actuator at a given position. Examples are electrostrictive polymers and dielectric elastomers.


Ferroelectric polymers

Structure of poly(vinylidene fluoride) Ferroelectric polymers are a group of crystalline polar polymers that are also
ferroelectric In physics and materials science, ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoel ...
, meaning that they maintain a permanent electric polarization that can be reversed, or switched, in an external
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
. Ferroelectric polymers, such as
polyvinylidene fluoride Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly non-reactive thermoplastic fluoropolymer produced by the polymerization of vinylidene difluoride. Its chemical formula is (C2H2F2)''n''. PVDF is a specialty plastic use ...
(PVDF), are used in acoustic transducers and electromechanical actuators because of their inherent
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
response, and as heat sensors because of their inherent pyroelectric response.


Electrostrictive graft polymers

An electrostrictive graft polymer Electrostrictive graft polymers consist of flexible backbone chains with branching side chains. The side chains on neighboring backbone polymers cross link and form crystal units. The backbone and side chain crystal units can then form polarized monomers, which contain atoms with partial charges and generate dipole moments. When an electrical field is applied, a force is applied to each partial charge, which causes rotation of the whole polymer unit. This rotation causes electrostrictive strain and deformation of the polymer.


Liquid crystalline polymers

Main-chain liquid crystalline polymers have mesogenic groups linked to each other by a flexible spacer. The mesogens within a backbone form the mesophase structure, causing the polymer itself to adopt a conformation compatible with the structure of the mesophase. The direct coupling of the liquid crystalline order with the polymer conformation has given main-chain liquid crystalline elastomers a large amount of interest. The synthesis of highly oriented elastomers leads to a large strain thermal actuation along the polymer chain direction, with temperature variation resulting in unique mechanical properties and potential applications as mechanical actuators.


Ionic

Ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
ic EAPs are polymers in which actuation is caused by the displacement of ions inside the polymer. Only a few volts are needed for actuation, but the ionic flow implies that higher electrical power is needed for actuation, and energy is needed to keep the actuator at a given position. Examples of ionic EAPs are
conductive polymer Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers ...
s, ionic polymer-metal composites (IPMCs), and responsive gels. Yet another example is a Bucky gel actuator, which is a polymer-supported layer of
polyelectrolyte Polyelectrolytes are polymers whose repeating units bear an electrolyte group. Polycations and polyanions are polyelectrolytes. These groups dissociate in aqueous solutions (water), making the polymers charged. Polyelectrolyte properties are t ...
material consisting of an
ionic liquid An ionic liquid (IL) is a salt (chemistry), salt in the liquid state at ambient conditions. In some contexts, the term has been restricted to salts whose melting point is below a specific temperature, such as . While ordinary liquids such as wate ...
sandwiched between two
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
layers, which is then a gel of ionic liquid containing single-wall
carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''S ...
s. The name comes from the similarity of the gel to the paper that can be made by filtering carbon nanotubes, the so-called
buckypaper Buckypaper is a thin sheet made from an aggregate of carbon nanotubes or carbon nanotube grid paper. The nanotubes are approximately 50,000 times thinner than a human hair. Originally, it was fabricated as a way to handle carbon nanotubes, but i ...
.


Electrorheological fluid

Electrorheological fluids change viscosity when an electric field is applied. The fluid is a suspension of polymers in a low dielectric-constant liquid. With the application of a large electric field the viscosity of the suspension increases. Potential applications of these fluids include shock absorbers, engine mounts and acoustic dampers.


Ionic polymer-metal composite

Ionic polymer-metal composites consist of a thin ionomeric membrane with noble metal electrodes plated on its surface. It also has cations to balance the charge of the anions fixed to the polymer backbone. They are very active
actuator An actuator is a machine element, component of a machine that produces force, torque, or Displacement (geometry), displacement, when an electrical, Pneumatics, pneumatic or Hydraulic fluid, hydraulic input is supplied to it in a system (called an ...
s that show very high deformation at low applied voltage and show low impedance. Ionic polymer-metal composites work through electrostatic attraction between the cationic counter ions and the cathode of the applied electric field. These types of polymers show the greatest promise for bio-mimetic uses as collagen fibers are essentially composed of natural charged ionic polymers. Nafion and Flemion are commonly used ionic polymer metal composites.


Stimuli-responsive gels

Stimuli-responsive gels (
hydrogel A hydrogel is a Phase (matter), biphasic material, a mixture of Porosity, porous and Permeation, permeable solids and at least 10% of water or other interstitial fluid. The solid phase is a water Solubility, insoluble three dimensional network ...
s, when the swelling agent is an aqueous solution) are a special kind of swellable polymer networks with volume phase transition behaviour. These materials change reversibly their volume, optical, mechanical and other properties by very small alterations of certain physical (e.g. electric field, light, temperature) or chemical (concentrations) stimuli. The volume change of these materials occurs by swelling/shrinking and is diffusion-based. Gels provide the biggest change in volume of solid-state materials. Combined with an excellent compatibility with micro-fabrication technologies, especially stimuli-responsive hydrogels are of strong increasing interest for microsystems with sensors and actuators. Current fields of research and application are chemical sensor systems, microfluidics and multimodal imaging systems.


Comparison of dielectric and ionic EAPs

Dielectric polymers are able to hold their induced displacement while activated under a DC voltage. This allows dielectric polymers to be considered for robotic applications. These types of materials also have high mechanical energy density and can be operated in air without a major decrease in performance. However, dielectric polymers require very high activation fields (>10 V/μm) that are close to the breakdown level. The activation of ionic polymers, on the other hand, requires only 1-2 volts. They however need to maintain wetness, though some polymers have been developed as self-contained encapsulated activators which allows their use in dry environments. Ionic polymers also have a low electromechanical coupling. They are however ideal for bio-mimetic devices.


Characterization

While there are many different ways electroactive polymers can be characterized, only three will be addressed here: stress–strain curve, dynamic mechanical thermal analysis, and dielectric thermal analysis.


Stress–strain curve

upThe unstressed polymer spontaneously forms a folded structure. Upon application of a stress, the polymer regains its original length. Stress strain curves provide information about the polymer's mechanical properties such as the brittleness, elasticity and yield strength of the polymer. This is done by providing a force to the polymer at a uniform rate and measuring the deformation that results. This technique is useful for determining the type of material (brittle, tough, etc.), but it is a destructive technique as the stress is increased until the polymer fractures.


Dynamic mechanical thermal analysis (DMTA)

Dynamic mechanical analysis is a non destructive technique that is useful in understanding the mechanism of deformation at a molecular level. In DMTA a sinusoidal stress is applied to the polymer, and based on the polymer's deformation, the
elastic modulus An elastic modulus (also known as modulus of elasticity (MOE)) is a quantity that describes an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. Definition The elastic modu ...
and damping characteristics are obtained (assuming the polymer is a
damped harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force ''F'' proportional to the displacement ''x'': \vec F = -k \vec x, where ''k'' is a positive const ...
). Elastic materials take the mechanical energy of the stress and convert it into potential energy which can later be recovered. An ideal spring will use all the potential energy to regain its original shape (no damping), while a liquid will use all the potential energy to flow, never returning to its original position or shape (high damping). A viscoeleastic polymer will exhibit a combination of both types of behavior.


Dielectric thermal analysis (DETA)

DETA is similar to DMTA, but instead of an alternating mechanical force an alternating electric field is applied. The applied field can lead to polarization of the sample, and if the polymer contains groups that have permanent dipoles, they will align with the electrical field. The
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more ...
can be measured from the change in amplitude and resolved into dielectric storage and loss components. The
electric displacement field In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, com ...
can also be measured by following the current. Once the field is removed, the dipoles will relax back into a random orientation.


Applications

EAP materials can be easily manufactured in various shapes due to the ease of processing many polymeric materials, making them very versatile materials. One potential application for EAPs is integration into
microelectromechanical systems MEMS (micro-electromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices ...
(MEMS) to produce smart actuators.


Artificial muscles

As the most prospective practical research direction, EAPs have been used in artificial muscles. Their ability to emulate the operation of biological muscles with high
fracture toughness In materials science, fracture toughness is the critical stress intensity factor of a sharp Fracture, crack where propagation of the crack suddenly becomes rapid and unlimited. It is a material property that quantifies its ability to resist crac ...
, large actuation strain and inherent vibration damping draw the attention of scientists in this field. EAPs have even successfully been used to make a type of hand.


Tactile displays

In recent years, "electro active polymers for refreshable
Braille Braille ( , ) is a Tactile alphabet, tactile writing system used by blindness, blind or visually impaired people. It can be read either on embossed paper or by using refreshable braille displays that connect to computers and smartphone device ...
displays" has emerged to aid the visually impaired in fast reading and computer assisted communication. This concept is based on using an EAP actuator configured in an array form. Rows of
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
s on one side of an EAP film and columns on the other activate individual elements in the array. Each element is mounted with a Braille dot and is lowered by applying a voltage across the thickness of the selected element, causing local thickness reduction. Under computer control, dots would be activated to create tactile patterns of highs and lows representing the information to be read. Visual and tactile impressions of a virtual surface are displayed by a high resolution tactile display, a so-called "artificial skin". These monolithic devices consist of an array of thousands of multimodal modulators (actuator pixels) based on stimuli-responsive hydrogels. Each modulator is able to change individually their transmission, height and softness. Besides their possible use as graphic displays for visually impaired such displays are interesting as free programmable keys of touchpads and consoles.


Microfluidics

EAP materials have huge potential for microfluidics, e.g. as
drug delivery Drug delivery involves various methods and technologies designed to transport pharmaceutical compounds to their target sites helping therapeutic effect. It involves principles related to drug preparation, route of administration, site-specif ...
systems, microfluidic devices and
lab-on-a-chip A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single integrated circuit (commonly called a "chip") of only millimeters to a few square centimeters to achieve automation and high-throughput screening. ...
. A first microfluidic platform technology reported in the literature is based on stimuli-responsive gels. To avoid the electrolysis of water, hydrogel-based microfluidic devices are mainly based on temperature-responsive polymers with lower critical solution temperature (LCST) characteristics, which are controlled by an electrothermic interface. Two types of micropumps are known, a diffusion micropump and a displacement micropump. Microvalves based on stimuli-responsive hydrogels show some advantageous properties such as particle tolerance, no leakage and outstanding pressure resistance. Besides these microfluidic standard components, the hydrogel platform provides also chemical sensors and a novel class of microfluidic components, the chemical transistors (also referred as chemostat valves). These devices regulate a liquid flow if a threshold concentration of a certain chemical is reached. Chemical transistors form the basis of microchemomechanical fluidic integrated circuits. "Chemical ICs" process exclusively chemical information, are energy-self-powered, operate automatically and are suitable for large-scale integration. Another microfluidic platform is based on ionomeric materials. Pumps made from that material could offer low voltage ( battery) operation, extremely low noise signature, high system efficiency, and highly accurate control of flow rate. Another technology that can benefit from the unique properties of EAP actuators is optical membranes. Due to their low modulus, the mechanical impedance of the actuators, they are well-matched to common optical
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
materials. Also, a single EAP actuator is capable of generating displacements that range from micrometers to centimeters. For this reason, these materials can be used for static shape correction and jitter suppression. These actuators could also be used to correct for
optical aberration In optics, aberration is a property of optical systems, such as Lens (optics), lenses and mirrors, that causes the ''image'' created by the optical system to not be a faithful reproduction of the ''object'' being observed. Aberrations cause the i ...
s due to atmospheric interference. Since these materials exhibit excellent electroactive character, EAP materials show potential in
biomimetic Biomimetics or biomimicry is the emulation of the models, systems, and elements of nature for the purpose of solving complex human problems. The terms "biomimetics" and "biomimicry" are derived from (''bios''), life, and μίμησις ('' mīm ...
-robot research, stress sensors and
acoustics Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician ...
field, which will make EAPs become a more attractive study topic in the near future. They have been used for various actuators such as face muscles and arm muscles in humanoid robots.http://eap.jpl.nasa.gov/ NASA WorldWide Electroactive Polymer Actuators Webhub


Future directions

The field of EAPs is far from mature, which leaves several issues that still need to be worked on. The performance and long-term stability of the EAP should be improved by designing a water impermeable surface. This will prevent the
evaporation Evaporation is a type of vaporization that occurs on the Interface (chemistry), surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evapora ...
of water contained in the EAP, and also reduce the potential loss of the positive counter ions when the EAP is operating submerged in an
aqueous An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in wat ...
environment. Improved surface conductivity should be explored using methods to produce a defect-free conductive surface. This could possibly be done using metal vapor deposition or other doping methods. It may also be possible to utilize conductive polymers to form a thick conductive layer. Heat resistant EAP would be desirable to allow operation at higher voltages without damaging the internal structure of the EAP due to the generation of heat in the EAP composite. Development of EAPs in different configurations (e.g., fibers and fiber bundles), would also be beneficial, in order to increase the range of possible modes of motion.


See also

*
Pneumatic artificial muscles Pneumatic artificial muscles (PAMs) are contractile or extensional devices operated by pressurized air filling a pneumatic bladder. In an approximation of human muscles, pneumatic artificial muscles are usually grouped in pairs: one agonist an ...
* Artificial muscles


References


Further reading


Electroactive polymer (EAP) actuators as artificial muscles – reality, potential and challenges

Electroactive Polymers as Artificial Muscles Reality and Challenges

Electroactive polymers for sensing
{{DEFAULTSORT:Electroactive Polymers Electrical engineering Polymer material properties Smart materials Transducers