HOME

TheInfoList



OR:

In
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
, defocus is the aberration in which an image is simply out of focus. This aberration is familiar to anyone who has used a camera, videocamera, microscope, telescope, or binoculars. Optically, defocus refers to a
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
of the focus along the
optical axis An optical axis is a line along which there is some degree of rotational symmetry in an optical system such as a camera lens, microscope or telescopic sight. The optical axis is an imaginary line that defines the path along which light pro ...
away from the detection surface. In general, defocus reduces the
sharpness Sharpness ( ) is an English port in Gloucestershire, one of the most inland in Britain, and eighth largest in the South West. It is on the River Severn at , at a point where the tidal range, though less than at Avonmouth downstream ( typical s ...
and contrast of the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensio ...
. What should be sharp, high-contrast edges in a scene become gradual transitions. Fine detail in the scene is blurred or even becomes invisible. Nearly all image-forming optical devices incorporate some form of focus adjustment to minimize defocus and maximize image quality.


In optics and photography

The degree of image blurring for a given amount of focus shift depends inversely on the lens f-number. Low f-numbers, such as to 2.8, are very sensitive to defocus and have very shallow depths of focus. High f-numbers, in the 16 to 32 range, are highly tolerant of defocus, and consequently have large depths of focus. The limiting case in f-number is the pinhole camera, operating at perhaps 100 to 1000, in which case all objects are in focus almost regardless of their distance from the pinhole
aperture In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of a bundle of rays that come to a focus in the image plane. An ...
. The penalty for achieving this extreme depth of focus is very dim illumination at the imaging
film A film also called a movie, motion picture, moving picture, picture, photoplay or (slang) flick is a work of visual art that simulates experiences and otherwise communicates ideas, stories, perceptions, feelings, beauty, or atmospher ...
or
sensor A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
, limited resolution due to
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
, and very long exposure time, which introduces the potential for image degradation due to
motion blur Motion blur is the apparent streaking of moving objects in a photograph or a sequence of frames, such as a film or animation. It results when the image being recorded changes during the recording of a single exposure, due to rapid movement or lo ...
. The amount of allowable defocus is related to the resolution of the imaging medium. A lower-resolution imaging chip or film is more tolerant of defocus and other aberrations. To take full advantage of a higher resolution medium, defocus and other aberrations must be minimized. Defocus is modeled in Zernike polynomial format as a(2 \rho^2-1), where a is the defocus coefficient in
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s of light. This corresponds to the
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descri ...
-shaped optical path difference between two spherical
wavefront In physics, the wavefront of a time-varying '' wave field'' is the set ( locus) of all points having the same '' phase''. The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal fr ...
s that are
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
at their vertices and have different radii of curvature. For some applications, such as phase contrast
electron microscopy An electron microscope is a microscope that uses a beam of accelerated electrons as a source of illumination. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light photons, electron microscopes have a hi ...
, defocused images can contain useful information. Multiple images recorded with various values of defocus can be used to examine how the intensity of the electron wave varies in three-dimensional space, and from this information the phase of the wave can be inferred. This is the basis of non-interferometric phase retrieval. Examples of phase retrieval algorithms that use defocused images include the
Gerchberg–Saxton algorithm The Gerchberg–Saxton (GS) algorithm is an iterative phase retrieval algorithm for retrieving the phase of a complex-valued wavefront from two intensity measurements acquired in two different planes. Typically, the two planes are the image plane ...
and various methods based on the
transport-of-intensity equation The transport-of-intensity equation (TIE) is a computational approach to reconstruct the phase of a complex wave in optical and electron microscopy. It describes the internal relationship between the intensity and phase distribution of a wave. Th ...
.


In vision

In casual conversation, the term ''blur'' can be used to describe any reduction in vision. However, in a clinical setting blurry vision means the subjective experience or perception of optical defocus within the eye, called
refractive error Refractive error, also known as refraction error, is a problem with focusing light accurately on the retina due to the shape of the eye and or cornea. The most common types of refractive error are near-sightedness, far-sightedness, astigmatism ...
. Blur may appear differently depending on the amount and type of refractive error. The following are some examples of blurred images that may result from refractive errors: Image:Specrx-letterscamblur.png Image:Specrx-lettersastigblur.png Image:Specrx-lettersastigblur2.png Image:Specrx-letterseyeblur.png The extent of blurry vision can be assessed by measuring
visual acuity Visual acuity (VA) commonly refers to the clarity of vision, but technically rates an examinee's ability to recognize small details with precision. Visual acuity is dependent on optical and neural factors, i.e. (1) the sharpness of the retinal ...
with an eye chart. Blurry vision is often corrected by focusing light on the retina with corrective lenses. These corrections sometimes have unwanted effects including magnification or reduction, distortion, color fringes, and altered depth perception. During an eye exam, the patient's acuity is measured without correction, with their current correction, and after
refraction In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomen ...
. This allows the
optometrist Optometry is a specialized health care profession that involves examining the eyes and related structures for defects or abnormalities. Optometrists are health care professionals who typically provide comprehensive primary eye care. In the Un ...
or
ophthalmologist Ophthalmology ( ) is a surgical subspecialty within medicine that deals with the diagnosis and treatment of eye disorders. An ophthalmologist is a physician who undergoes subspecialty training in medical and surgical eye care. Following a med ...
("eye doctor") to determine the extent refractive errors play in limiting the quality of the patient's vision. A Snellen acuity of 6/6 or 20/20, or as decimal value 1.0, is considered to be sharp vision for an average human (young adults may have nearly twice that value). Best-corrected acuity lower than that is an indication that there is another limitation to vision beyond the correction of refractive error.


The blur disk

Optical defocus can result from incorrect corrective lenses or insufficient accommodation, as, e.g., in presbyopia from the aging eye. As said above, light rays from a point source are then not focused to a single point on the retina but are distributed in a little disk of light, called the ''blur disk''. Its size depends on pupil size and amount of defocus, and is calculated by the equation d=0.057 p D (''d'' = diameter in degrees visual angle, ''p'' = pupil size in mm, ''D'' = defocus in diopters). In linear systems theory, the point image (i.e. the blur disk) is referred to as the point spread function (PSF). The retinal image is given by the
convolution In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution'' ...
of the in-focus image with the PSF.


See also

* Bokeh * Shape from defocus


References

*Smith, Warren J., ''Modern Optical Engineering'', McGraw–Hill, 2000, Chapter 11, Optics Geometrical optics {{optics-stub