HOME

TheInfoList



OR:

Doppler cooling is a mechanism that can be used to trap and slow the
motion In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an o ...
of
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s to cool a substance. The term is sometimes used synonymously with
laser cooling Laser cooling includes several techniques where atoms, molecules, and small mechanical systems are cooled with laser light. The directed energy of lasers is often associated with heating materials, e.g. laser cutting, so it can be counterintuit ...
, though laser cooling includes other techniques.


History

Doppler cooling was simultaneously proposed by two groups in 1975, the first being David J. Wineland and Hans Georg Dehmelt and the second being
Theodor W. Hänsch Theodor Wolfgang Hänsch (; born 30 October 1941) is a German physicist. He received one-fourth of the 2005 Nobel Prize in Physics for "contributions to the development of laser-based precision spectroscopy, including the optical frequency comb ...
and
Arthur Leonard Schawlow Arthur Leonard Schawlow (May 5, 1921 – April 28, 1999) was an American physicist who, along with Charles Townes, developed the theoretical basis for laser science. His central insight was the use of two mirrors as the resonant cavity to take m ...
. It was first demonstrated by Wineland, Drullinger, and Walls in 1978 and shortly afterwards by Neuhauser, Hohenstatt, Toschek and Dehmelt. One conceptually simple form of Doppler cooling is referred to as
optical molasses Optical molasses (OM) is a laser cooling technique that can cool neutral atoms to as low as a few microkelvins, depending on the atomic species. An optical molasses consists of 3 pairs of counter-propagating orthogonally polarized laser beams inte ...
, since the
dissipative In thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system. In a dissipative process, energy ( internal, bulk flow kinetic, or system potential) transforms from an initial form to a final form, wh ...
optical
force In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
resembles the
viscous Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup h ...
drag on a body moving through molasses.
Steven Chu Steven ChuClaude Cohen-Tannoudji Claude Cohen-Tannoudji (; born 1 April 1933) is a French physicist. He shared the 1997 Nobel Prize in Physics with Steven Chu and William Daniel Phillips for research in methods of laser cooling and magnetic trap (atoms), trapping atoms. Currentl ...
and William D. Phillips were awarded the 1997
Nobel Prize in Physics The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
for their work in laser cooling and atom trapping.


Brief explanation

Doppler cooling involves light with frequency tuned slightly below an
electronic transition In atomic physics and chemistry, an atomic electron transition (also called an atomic transition, quantum jump, or quantum leap) is an electron changing from one energy level to another within an atom or artificial atom. The time scale of a qua ...
in an
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
. Because the light is detuned to the "red" (i.e. at lower frequency) of the transition, the atoms will absorb more
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s if they move towards the light source, due to the
Doppler effect The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described ...
. Consider the simplest case of 1D motion on the x axis. Let the photon be traveling in the +x direction and the atom in the −x direction. In each absorption event, the atom loses a
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
equal to the momentum of the photon. The atom, which is now in the excited state, emits a photon spontaneously but randomly along +x or −x. Momentum is returned to the atom. If the photon was emitted along +x then there is no net change; however, if the photon was emitted along −x, then the atom is moving more slowly in either −x or +x. The net result of the absorption and emission process is a reduced speed of the atom, on the condition that its initial speed is larger than the recoil
velocity Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical q ...
from scattering a single photon. If the absorption and emission are repeated many times, the mean velocity, and therefore the
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
of the atom, will be reduced. Since the
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
of an ensemble of atoms is a measure of the random internal kinetic energy, this is equivalent to cooling the atoms. The Doppler cooling limit is the minimum temperature achievable with Doppler cooling.


Detailed explanation

The vast majority of photons that come anywhere near a particular atom are almost completely unaffected by that atom. The atom is almost completely transparent to most frequencies (colors) of photons. A few photons happen to "
resonate Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
" with the atom in a few very narrow bands of frequencies (a single color rather than a mixture like white light). When one of those photons comes close to the atom, the atom typically absorbs that photon (
absorption spectrum Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, ...
) for a brief period of time, then emits an identical photon (
emission spectrum The emission spectrum of a chemical element or chemical compound is the Spectrum (physical sciences), spectrum of frequencies of electromagnetic radiation emitted due to electrons making a atomic electron transition, transition from a high energ ...
) in some random, unpredictable direction. (Other sorts of interactions between atoms and photons exist, but are not relevant to this article.) The popular idea that lasers increase the thermal energy of matter is not the case when examining individual atoms. If a given atom is practically motionless (a "cold" atom), and the frequency of a laser focused upon it can be controlled, most frequencies do not affect the atom—it is invisible at those frequencies. There are only a few points of electromagnetic frequency that have any effect on that atom. At those frequencies, the atom can absorb a photon from the laser, while transitioning to an excited electronic state, and pick up the momentum of that photon. Since the atom now has the photon's momentum, the atom must begin to drift in the direction the photon was traveling. A short time later, the atom will spontaneously emit a photon in a random direction as it relaxes to a lower electronic state. If that photon is emitted in the direction of the original photon, the atom will give up its momentum to the photon and will become motionless again. If the photon is emitted in the opposite direction, the atom will have to provide momentum in that opposite direction, which means the atom will pick up even more momentum in the direction of the original photon (to conserve momentum), with double its original velocity. But usually the photon speeds away in some ''other'' direction, giving the atom at least some sideways thrust. Another way of changing frequencies is to change the positioning of the laser, for example, by using a monochromatic (single-color) laser that has a frequency that is a little below one of the "resonant" frequencies of this atom (at which frequency the laser will not directly affect the atom's state). If the laser were to be positioned so that it was moving ''towards'' the observed atoms, then the
Doppler effect The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described ...
would raise its frequency. At one specific velocity, the frequency would be precisely correct for said atoms to begin absorbing photons. Something very similar happens in a laser cooling apparatus, except such devices start with a warm cloud of atoms moving in numerous directions at variable velocity. Starting with a laser frequency well below the resonant frequency, photons from any one laser pass right through the majority of atoms. However, atoms moving rapidly ''towards'' a particular laser catch the photons for that laser, slowing those atoms down until they become transparent again. (Atoms rapidly moving ''away'' from that laser are transparent to that laser's photons—but they are rapidly moving ''towards'' the laser directly opposite it). This utilization of a specific velocity to induce absorption is also seen in
Mössbauer spectroscopy Mössbauer spectroscopy is a spectroscopic technique based on the Mössbauer effect. This effect, discovered by Rudolf Mössbauer (sometimes written "Moessbauer", German: "Mößbauer") in 1958, consists of the nearly recoil-free emission and a ...
. On a graph of atom velocities (atoms moving rapidly to the right correspond with stationary dots far to the right, atoms moving rapidly to the left correspond with stationary dots far to the left), there is a narrow band on the left edge corresponding to the speed at which those atoms start absorbing photons from the left laser. Atoms in that band are the only ones that interact with the left laser. When a photon from the left laser slams into one of those atoms, it suddenly slows down an amount corresponding to the momentum of that photon (the dot would be redrawn some fixed "quantum" distance further to the right). If the atom releases the photon directly to the right, then the dot is redrawn that same distance to the left, putting it back in the narrow band of interaction. But usually the atom releases the photon in some other random direction, and the dot is redrawn that quantum distance in the opposite direction. Such an apparatus would be constructed with many lasers, corresponding to many boundary lines that completely surround that cloud of dots. As the laser frequency is increased, the boundary contracts, pushing all the dots on that graph towards zero velocity, the given definition of "cold".


Limits


Minimum temperature

The Doppler temperature is the minimum temperature achievable with Doppler cooling. When a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
is absorbed by an atom counter-propagating to the light source, its velocity is decreased by
momentum conservation In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the Multiplication, product of the mass and velocity of an object. It is a Euclidean vector, vector quantity, possessi ...
. When the absorbed photon is spontaneously emitted by the excited atom, the atom receives a momentum kick in a random direction. The spontaneous emissions are isotropic and therefore these momentum kicks average to zero for the mean velocity. On the other hand, the mean squared velocity, \langle v^2\rangle, is not zero in the random process, and thus heat is supplied to the atom. At equilibrium, the heating and cooling rates are equal, which sets a limit on the amount by which the atom can be cooled. As the transitions used for Doppler cooling have broad
natural linewidth Nature is an inherent character or constitution, particularly of the ecosphere or the universe as a whole. In this general sense nature refers to the laws, elements and phenomena of the physical world, including life. Although humans are part ...
s \gamma (measured in radians per second), this sets the lower limit to the temperature of the atoms after cooling to be T_ = \hbar \gamma /(2k_\text) , where k_\text is the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
and \hbar is the
reduced Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
. This is usually much higher than the recoil temperature, which is the temperature associated with the momentum gained from the spontaneous emission of a photon. The Doppler limit has been verified with a gas of metastable helium.


Sub-Doppler cooling

Temperatures well below the Doppler limit have been achieved with various laser cooling methods, including Sisyphus cooling,
evaporative cooling An evaporative cooler (also known as evaporative air conditioner, swamp cooler, swamp box, desert cooler and wet air cooler) is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning sy ...
, and resolved sideband cooling. The theory of Doppler cooling assumes an atom with a simple two level structure, whereas most atomic species which are laser cooled have complicated hyperfine structure. Mechanisms such as Sisyphus cooling due to multiple ground states lead to temperatures lower than the Doppler limit.


Maximum concentration

The concentration must be minimal to prevent the absorption of the photons into the gas in the form of heat. This absorption happens when two atoms collide with each other while one of them has an excited electron. There is then a possibility of the excited electron dropping back to the ground state with its extra energy liberated in additional kinetic energy to the colliding atoms—which heats the atoms. This works against the cooling process and therefore limits the maximum concentration of gas that can be cooled using this method.


Atomic structure

Only certain atoms and ions have optical transitions amenable to laser cooling, since it is extremely difficult to generate the amounts of laser power needed at wavelengths much shorter than 300 nm. Furthermore, the more
hyperfine structure In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole int ...
an atom has, the more ways there are for it to emit a photon from the upper state and ''not'' return to its original state, putting it in a
dark state In atomic physics, a dark state refers to a state of an atom or molecule that cannot absorb (or emit) photons. All atoms and molecules are described by quantum states; different states can have different energies and a system can make a transition ...
and removing it from the cooling process. It is possible to use other lasers to optically pump those atoms back into the excited state and try again, but the more complex the hyperfine structure is, the more (narrow-band, frequency locked) lasers are required. Since frequency-locked lasers are both complex and expensive, atoms which need more than one extra ''repump'' laser are rarely cooled; the common
rubidium Rubidium is a chemical element; it has Symbol (chemistry), symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have ...
magneto-optical trap In atomic, molecular, and optical physics, a magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially varying magnetic field to create a Magnetic trap (atoms), trap which can produce samples of Ultracold atom, cold neu ...
, for example, requires one repump laser. This is also the reason why molecules are in general difficult to laser cool: in addition to hyperfine structure, molecules also have rovibronic couplings and so can also decay into excited rotational or vibrational states. However, laser cooling of molecules has been demonstrated, first with SrF molecules, and subsequently with other diatomics such as CaF and YO.


Configurations

Counter-propagating sets of laser beams in all three Cartesian dimensions may be used to cool the three motional
degrees of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
of the atom. Common laser-cooling configurations include optical molasses, the
magneto-optical trap In atomic, molecular, and optical physics, a magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially varying magnetic field to create a Magnetic trap (atoms), trap which can produce samples of Ultracold atom, cold neu ...
, and the Zeeman slower. Atomic ions, trapped in an
ion trap An ion trap is a combination of electric field, electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of a ...
, can be cooled with a single laser beam as long as that beam has a component along all three motional degrees of freedom. This is in contrast to the six beams required to trap neutral atoms. The original laser cooling experiments were performed on ions in ion traps. (In theory, neutral atoms could be cooled with a single beam if they could be trapped in a deep trap, but in practice neutral traps are much shallower than ion traps and a single recoil event can be enough to kick a neutral atom out of the trap.)


Applications

One use for Doppler cooling is the
optical molasses Optical molasses (OM) is a laser cooling technique that can cool neutral atoms to as low as a few microkelvins, depending on the atomic species. An optical molasses consists of 3 pairs of counter-propagating orthogonally polarized laser beams inte ...
technique. This process itself forms a part of the
magneto-optical trap In atomic, molecular, and optical physics, a magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially varying magnetic field to create a Magnetic trap (atoms), trap which can produce samples of Ultracold atom, cold neu ...
but it can be used independently. Doppler cooling is also used in spectroscopy and metrology, where cooling allows narrower spectroscopic features. For example, all of the best atomic clock technologies involve Doppler cooling at some point.


See also

*
Laser cooling Laser cooling includes several techniques where atoms, molecules, and small mechanical systems are cooled with laser light. The directed energy of lasers is often associated with heating materials, e.g. laser cutting, so it can be counterintuit ...
*
Magneto-optical trap In atomic, molecular, and optical physics, a magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially varying magnetic field to create a Magnetic trap (atoms), trap which can produce samples of Ultracold atom, cold neu ...
* Resolved sideband cooling


References


Further reading

* * * {{Lasers Atomic physics Cooling technology Doppler effects