Domino Logic
   HOME

TheInfoList



OR:

Domino logic is a
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss ", , ) is a type of MOSFET, metal–oxide–semiconductor field-effect transistor (MOSFET) semiconductor device fabrication, fabrication process that uses complementary an ...
-based evolution of dynamic logic techniques consisting of a dynamic logic gate cascaded into a static
CMOS inverter In digital logic, an inverter or NOT gate is a logic gate which implements logical negation. It outputs a bit opposite of the bit that is put into it. The bits are typically implemented as two differing voltage levels. Description The NOT gate ...
. The term derives from the fact that in domino logic, each stage ripples the next stage for evaluation, similar to dominoes falling one after the other. Domino logic contrasts with other solutions to the cascade problem where cascading is interrupted by clocks or other means. Domino logic was developed to speed up circuits, solving the premature cascade problem, typically by inserting static CMOS inverters between domino stages to avoid premature discharge of further cascaded dynamic logic gates. Domino logic allows a rail-to-rail logic swing, with the output being able to switch from the power supply voltage to the ground voltage.


Dynamic logic

Dynamic logic differs from static logic by including a
clock signal In electronics and especially synchronous digital circuits, a clock signal (historically also known as ''logic beat'') is an electronic logic signal (voltage or current) which oscillates between a high and a low state at a constant frequency and ...
to speed up performance. In CMOS dynamic logic gates, the gate output is precharged to the power supply voltage while the clock is off (the "precharge" phase), and then is evaluated to the correct logic state while the clock is on (the "evaluation" phase) by draining the relevant NMOS transistors in the pull-down network. When cascading dynamic logic gates, however, a problem arises: the precharge "1" state of the first gate may cause the second gate to discharge prematurely, before the first gate has reached its correct state. This uses up the precharge of the second gate, which cannot be restored until the next clock cycle, so there is no recovery from this error.


Domino logic operation

In order to cascade dynamic logic gates, one solution is domino logic, which inserts an ordinary static inverter between stages. In a multistage domino logic cascade structure, the evaluation of each stage ripples the next stage for evaluation, similar to dominoes falling one after the other. Once evaluated, the node states cannot return to "1" until the next precharge phase begins. While the insertion of the inverter might seem to defeat the point of dynamic logic, since the inverter has a pFET (one of the main goals of dynamic logic is to avoid pFETs where possible, due to speed), there are two reasons it works well. First, there is no
fan-out In digital electronics, the fan-out is the number of gate inputs driven by the output of another single logic gate. In most designs, logic gates are connected to form more complex circuits. While no logic gate input can be fed by more than one ...
to multiple pFETs; the dynamic gate connects to exactly one inverter, so the gate is still very fast. Furthermore, since the inverter connects to only nFETs in dynamic logic gates, it too is very fast. Second, the pFET in an inverter can be made smaller than in some types of logic gates.


Modifications to domino logic

Charge sharing can cause difficulties for domino logic signal integrity; during the evaluation phase, NMOS transistors next to the output which are on may cause undesired discharging from the output node. To fix this, a keeper transistor can be used. This keeper transistor is a PMOS transistor with its gate connected to the inverter output, its source connected to the power supply, and its drain connected to the inverter input. The keeper transistor thus connects the dynamic node to the power supply whenever it is supposed to be in the "1" state, allowing the output to be correctly restored despite the charge sharing. Another issue in domino logic is its noninverting property; that is, it can only implement gates that do not have inversions at their outputs (such as
AND gate The AND gate is a basic digital logic gate that implements the logical conjunction (∧) from mathematical logic AND gates behave according to their truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If a ...
s and
OR gate The OR gate is a digital logic gate that implements logical disjunction. The OR gate outputs "true" if any of its inputs is "true"; otherwise it outputs "false". The input and output states are normally represented by different voltage levels. ...
s, as opposed to
NAND gate In digital electronics, a NAND (NOT AND) gate is a logic gate which produces an output which is false only if all its inputs are true; thus its output is complement to that of an AND gate. A LOW (0) output results only if all the inputs to the ...
s and
NOR gate The NOR (NOT OR) gate is a digital logic gate that implements logical NOR - it behaves according to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW o ...
s). To rectify this property, some variants of domino logic are differential or dual-rail in nature, using inverted as well as non-inverted inputs to implement the logic function as well as its inverse. These varieties also include cross-coupled pFETs to attenuate
noise Noise is sound, chiefly unwanted, unintentional, or harmful sound considered unpleasant, loud, or disruptive to mental or hearing faculties. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrat ...
. Traditional domino logic circuits are "footed", that is, they have an NMOS transistor controlled by the clock which is connected to the ground rail. Some domino logic circuits, however, are "footless": they lack this transistor, resulting in higher speed at the cost of greater power leakage.


See also

*
Dynamic logic (digital electronics) In integrated circuit design, dynamic logic (or sometimes clocked logic) is a design methodology in combinational logic circuits, particularly those implemented in metal–oxide–semiconductor (MOS) technology. It is distinguished from the so ...
*
Sequential logic In automata theory, sequential logic is a type of logic circuit whose output depends on the present value of its input signals and on the sequence of past inputs, the input history. This is in contrast to '' combinational logic'', whose output i ...


References


General references

* *


External links


Domino Logic, Boston University.

Dynamic Logic, Paul DeMone.
{{Logic Families Logic families